已知f(x)=9x-2×3x+4,x∈[0,2]
(1)設(shè)t=3x,x∈[0,2],求t的最大值與最小值;
(2)求f(x)的最大值與最小值.
考點:指數(shù)型復合函數(shù)的性質(zhì)及應用
專題:函數(shù)的性質(zhì)及應用
分析:(1)根據(jù)指數(shù)函數(shù)的性質(zhì),即可求t的最大值與最小值;
(2)將函數(shù)轉(zhuǎn)化為關(guān)于t的函數(shù),即可求f(x)的最大值與最小值.
解答: 解:(1)設(shè)t=3x,x∈[0,2],則1≤t≤32,即1≤t≤9,即t的最大值為9,最小值為1;
(2)設(shè)t=3x,x∈[0,2],
則1≤t≤9,
函數(shù)f(x)轉(zhuǎn)化為y=t2-2t+4=(t-1)2+3,
∵1≤t≤9,
∴當t=1時,y最小為y=3,
當t=9時,y最大為64+3=67,
即f(x)的最大值為67,最小值3.
點評:本題主要考查函數(shù)的最值的計算,利用指數(shù)函數(shù)的單調(diào)性以及利用換元法將函數(shù)轉(zhuǎn)化為二次函數(shù)是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若當P(m,n)為圓x2+(y-1)2=1上任意一點時,等式m+n+c=0恒成立,則c的取值范圍是( 。
A、-1-
2
≤c≤
2
-1
B、
2
-1≤c≤
2
+1
C、c≤-
2
-1
D、c≥
2
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三角形ABC中,角A、B、C所對邊分別為a,b,c,且
2
sinB=
3cosB

(1)若cosA=
1
3
,求sinC的值;
(2)若b=
7
,sinA=3sinC,求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x(
1
2x-1
+
1
2

(1)判定并證明函數(shù)的奇偶性;
(2)試證明f(x)>0在定義域內(nèi)恒成立;
(3)當x∈[1,3]時,2f(x)-(
1
2
m•x<0恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)x為實數(shù),求證:1+2x4≥x2+2x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=(x-a)2+(lnx-a)2
(Ⅰ)求函數(shù)f(x)在A(1,0)處的切線方程;
(Ⅱ)若g′(x)在[1,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(Ⅲ)證明:g(x)≥
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(
1
2
,
1
2
sinx+
3
2
cosx)和向量
b
=(1,f(x)),且
a
b

(1)求函數(shù)f(x)的最小正周期和最大值;
(2)已知△ABC的三個內(nèi)角分別為A,B,C,若有f(A-
π
3
)=
3
,BC=
7
,sinB=
21
7
,求AC的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)有0,1,2,3,4,5六個數(shù)字.
(1)用所給數(shù)字能夠組成多少個四位數(shù)?
(2)用所給數(shù)字可以組成多少個沒有重復數(shù)字的五位數(shù)?
(3)用所給數(shù)字可以組成多少個沒有重復數(shù)字且比3142大的數(shù)?(最后結(jié)果均用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1=a-2i,z2=b+i,
.
z1
是z1的共軛復數(shù).若
.
z1
•z2=-4,則b=
 

查看答案和解析>>

同步練習冊答案