考點(diǎn):數(shù)列遞推式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由a
n+1=a
n2+6a
n+6得:a
n+1+3=(a
n+3)
2,從而得到數(shù)列{lg(a
n+3)}是以lg(a
1+3)=lg5為首項(xiàng),以2為公比的等比數(shù)列,由此能求出a
n=
52n-1-3.
(Ⅱ)b
n=
-
=
-,從而T
n=-
,由此能證明-
≤Tn<-.
解答:
(本小題滿分12分)
解:(Ⅰ)由a
n+1=a
n2+6a
n+6得:a
n+1+3=(a
n+3)
2兩邊同時(shí)取對(duì)數(shù)得:lg(a
n+1+3)=2lg(a
n+3),
∴數(shù)列{lg(a
n+3)}是以lg(a
1+3)=lg5為首項(xiàng),以2為公比的等比數(shù)列,
∴l(xiāng)g(a
n+3)=lg5•2
n-1,
∴a
n=
52n-1-3.
(Ⅱ)∵數(shù)列{a
n}滿足a
1=2,a
n+1=a
n2+6a
n+6(n∈N
*).
∴b
n=
-
=
-,
∴T
n=
-+-+…+
-=
-=-
,
∵n≥1,∴2
n≥2,∴
52n≥25,
∴
52n-1-9≥16,
∴0<
≤
,
∴-
≤-
<0,
∴-
≤-
-<-,
∴-
≤Tn<-.
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,考查不等式的證明,解題時(shí)要認(rèn)真審題,注意裂項(xiàng)求和法的合理運(yùn)用.