已知x,y滿足直線l:x+2y=6.
(1)求原點O關(guān)于直線l的對稱點P的坐標(biāo);
(2)當(dāng)x∈(1,3]時,求k=
y-1
x-1
的取值范圍.
考點:直線的一般式方程
專題:直線與圓
分析:(1)根據(jù)點的對稱即可求原點O關(guān)于直線l的對稱點P的坐標(biāo);
(2)根據(jù)斜率的幾何意義即可,求k=
y-1
x-1
的取值范圍.
解答: 解:(1)設(shè)原點O關(guān)于直線l的對稱點P的坐標(biāo)為(a,b),
則滿足
b
a
=2
a
2
+2×
b
2
=6
,解得a=
12
5
,b=
24
5
,故P(
12
5
,
24
5

(2)當(dāng)x∈(1,3]時,k=
y-1
x-1
的幾何意義為到點C(1,1)的斜率的取值范圍.
由圖象可得A(3,
3
2
),
則AC的斜率k=
3
2
-1
3-1
=
1
4

則k≥
1
4
點評:本題主要考查點關(guān)于直線的對稱以及直線斜率的求解,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

今年冬季,我國大部分地區(qū)遭遇霧霾天氣,給人們的健康、交通安全等帶來了嚴(yán)重影響.經(jīng)研究,發(fā)現(xiàn)工業(yè)廢氣等污染物排放是霧霾形成和持續(xù)的重要因素,污染治理刻不容緩.為此,某工廠新購置并安裝了先進的廢氣處理設(shè)備,使產(chǎn)生的廢氣經(jīng)過過濾后排放,以降低對空氣的污染.已知過濾過程中廢氣的污染物數(shù)量P(單位:mg/L)與過濾時間t(單位:小時)間的關(guān)系為P(t)=P0e-k t(P0,k均為非零常數(shù),e為自然對數(shù)的底數(shù)),其中P0為t=0時的污染物數(shù)量.若經(jīng)過5小時過濾后還剩余90%的污染物.
(Ⅰ)求常數(shù)k的值;
(Ⅱ)試計算污染物減少到40%至少需要多少時間(精確到1小時,參考數(shù)據(jù):ln0.2≈-1.61,ln0.3≈-1.20,ln0.4=-0.92,ln0.5=-0.69,ln0.9≈-0.11).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

討論y=ax+b(a≠0)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinxcosx+
1+cos2x
2
+a(a為常數(shù)).
(1)求函數(shù)f(x)的最小正周期,并指出其單調(diào)減區(qū)間;
(2)若函數(shù)f(x)在[0,
π
2
]
上的最大值是2,試求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=e an-an-1,求證:0<an+1<an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=2,an+1=an2+6an+6(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=
1
an-6
-
1
an2+6an
,數(shù)列{bn}的前n項和為Tn,求證:-
5
16
≤Tn<-
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項的和為Sn,且{
Sn
n
}是等差數(shù)列,已知a1=1,
S2
2
+
S3
3
+
S4
4
=12.
(Ⅰ)求{an}的通項公式an
(Ⅱ)當(dāng)n≥2時,an+1+
λ
an
≥λ-140恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn=2n+1-n-2,集合A={a1,a2,…,an},B={x|y=
6
x+1
,x∈N*,y∈N*},求:
(1)數(shù)列{an}的通項公式;
(2)A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sinx+cosx(x∈R)的值域是
 

查看答案和解析>>

同步練習(xí)冊答案