(本小題滿分14分)已知△ABC的三個頂點坐標分別是A(4,1),B(6,-3),C(-3,0),求△ABC外接圓的方程.
.
【解析】本題可以利用待定系數(shù)法設出圓的一般方程,然后根據(jù)題目條件建立三個關于D、E、F的方程,聯(lián)立解方程組即可求出圓的方程.
也可以利用圓的幾何性質,圓心在弦的垂直平分線,確定圓心及半徑,求出圓的標準方程也可.
解法一:設所求圓的方程是. ①——————2分
因為A(4,1),B(6,-3),C(-3,0)都在圓上,
所以它們的坐標都滿足方程①,于是
————————————8分
解得——————————————12分
所以△ABC的外接圓的方程是.————————14分
(其他解法參照給分)
解法二:設所求方程為,則易求得,,,于是所求圓的方程是
解法三:因為△ABC外接圓的圓心既在AB的垂直平分線上,也在BC的垂直平分線上,所以先求AB、BC 的垂直平分線方程,求得的交點坐標就是圓心坐標.
∵,,
線段AB的中點為(5,-1),線段BC的中點為,
∴AB的垂直平分線方程為, ①
BC的垂直平分線方程. ②
解由①②聯(lián)立的方程組可得∴△ABC外接圓的圓心為E(1,-3),
半徑.
故△ABC外接圓的方程是.
科目:高中數(shù)學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com