2.已知球O是某幾何體的外接球,而該幾何體是由一個(gè)側(cè)棱長(zhǎng)為2$\sqrt{5}$的正四棱錐S-ABCD與一個(gè)高為6的正四棱柱ABCD-A1B1C1D1拼接而成,則球O的表面積為( 。
A.$\frac{100π}{3}$B.64πC.100πD.$\frac{500π}{3}$

分析 設(shè)球的半徑為R,AB=2x,S到平面ABCD的距離為$\sqrt{20-2{x}^{2}}$,列出半徑的表達(dá)式,由勾股定理可得R2=32+2x2,由此求出R,即可求出球的表面積.

解答 解:設(shè)球的半徑為R,AB=2x,$\frac{1}{2}AC$=$\sqrt{2}x$,
則球心到平面A1B1C1D1的距離為3
幾何體是由一個(gè)側(cè)棱長(zhǎng)為2$\sqrt{5}$的正四棱錐S-ABCD
S到平面ABCD的距離為$\sqrt{(2\sqrt{5})^{2}-(\sqrt{2}x)^{2}}$=$\sqrt{20-2{x}^{2}}$,
則:$\sqrt{20-2{x}^{2}}$+3=R,
又勾股定理可得R2=32+2x2,
∴R=5,x=2$\sqrt{2}$
∴球的表面積為4πR2=100π.
故選:C.

點(diǎn)評(píng) 本題考查球的表面積,考查學(xué)生的計(jì)算能力,求出球的半徑是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(Ⅰ)求函數(shù)f(x)=$\frac{|3x+2|-|1-2x|}{|x+3|}$的最大值M.
(Ⅱ)是否存在滿足a2+b2≤c≤M的實(shí)數(shù)a,b,c使得2(a+b+c)+1≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.參數(shù)方程$\left\{\begin{array}{l}{x=t}\\{y=1+t}\end{array}\right.$(t為參數(shù))表示曲線是(  )
A.一條射線B.兩條射線C.一條直線D.兩條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.曲線的參數(shù)方程為$\left\{{\begin{array}{l}{x=\sqrt{5}cosθ}\\{y=sinθ}\end{array},}\right.0≤θ<π$,則它的直角坐標(biāo)方程為$\frac{{x}^{2}}{5}+{y}^{2}=1$,-$\sqrt{5}$<x≤$\sqrt{5}$,0≤y≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.《九章算術(shù)》是我國古代一部重要的數(shù)學(xué)著作,書中有如下問題:“今有良馬與駑馬發(fā)長(zhǎng)安,至齊.齊去長(zhǎng)安三千里,良馬初日行一百九十三里,日增一十三里,駕馬初日行九十七里,日減半里.良馬先至齊,復(fù)還迎駑馬.何日相逢,”其大意為:“現(xiàn)在有良馬和駑馬同時(shí)從長(zhǎng)安出發(fā)到齊去,已知長(zhǎng)安和齊的距離是3000里,良馬第一天行193里,之后每天比前一天多行13里,駑馬第一天行97里,之后每天比前一天少行0.5里.良馬到齊后,立刻返回去迎駑馬,多少天后兩馬相遇.”現(xiàn)有三種說法:①駑馬第九日走了93里路;②良馬四日共走了930里路;③行駛5天后,良馬和駑馬相距615里.
那么,這3個(gè)說法里正確的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知{an},{bn}是公差分別為d1,d2的等差數(shù)列,且An=an+bn,Bn=anbn.若A1=1,A2=3,則An=2n-1;若{Bn}為等差數(shù)列,則d1d2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.某流程圖如圖所示,現(xiàn)輸入如下四個(gè)函數(shù),則可以輸出的函數(shù)是①②③.
①f(x)=$\frac{sinx}{{x}^{2}}$          
②f(x)=ln($\sqrt{{x}^{2}+1}$+x)
③f(x)=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$
④f(x)=$\frac{si{n}^{2}x}{1+co{s}^{2}x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知點(diǎn)D為△ABC所在平面內(nèi)一點(diǎn).且$\overrightarrow{AD}$=3$\overrightarrow{AB}$+4$\overrightarrow{AC}$,若點(diǎn)E為直線BC上一點(diǎn),且$\overrightarrow{ED}$=λ$\overrightarrow{AE}$,則λ的值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在極坐標(biāo)系中,曲線C1:ρsin2θ=4cosθ.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系xOy,曲線C2的參數(shù)方程為:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$,(θ∈[-$\frac{π}{2}$,$\frac{π}{2}$]),曲線C:$\left\{\begin{array}{l}{x={x}_{0}+\frac{1}{2}t}\\{y={y}_{0}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)).
(Ⅰ)求C1的直角坐標(biāo)方程;
(Ⅱ)C與C1相交于A,B,與C2相切于點(diǎn)Q,求|AQ|-|BQ|的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案