11.已知點(diǎn)D為△ABC所在平面內(nèi)一點(diǎn).且$\overrightarrow{AD}$=3$\overrightarrow{AB}$+4$\overrightarrow{AC}$,若點(diǎn)E為直線BC上一點(diǎn),且$\overrightarrow{ED}$=λ$\overrightarrow{AE}$,則λ的值為(  )
A.4B.5C.6D.7

分析 利用平面向量基本定理以及向量共線的關(guān)系分別得到$\overrightarrow{AD}$的兩個(gè)表達(dá)式,根據(jù)定理得到對(duì)應(yīng)向量系數(shù)相等,得到方程組解之.

解答 解:因?yàn)辄c(diǎn)E為直線BC上一點(diǎn),所以設(shè)$\overrightarrow{BE}=x\overrightarrow{BC}$,且$\overrightarrow{ED}$=λ$\overrightarrow{AE}$,
所以$\overrightarrow{AD}=\overrightarrow{AE}+\overrightarrow{ED}=(1+λ)\overrightarrow{AE}$
=(1+λ)($\overrightarrow{AB}+x\overrightarrow{BC}$)
=(1+λ)$\overrightarrow{AB}$+(1+λ)x$\overrightarrow{BC}$
=(1+λ)(1-x)$\overrightarrow{AB}$+(1+λ)x$\overrightarrow{AC}$
=$3\overrightarrow{AB}+4\overrightarrow{AC}$,
由平面向量基本定理得到$\left\{\begin{array}{l}{(1+λ)(1-x)=3}\\{(1+λ)x=4}\end{array}\right.$,解得λ=6;
故選C.

點(diǎn)評(píng) 本題考查了向量共線定理、平面向量基本定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.當(dāng)x>0時(shí),不等式x2-mx+9>0恒成立,則實(shí)數(shù)m的取值范圍是(  )
A.(-∞,6)B.(-∞,6]C.[6,+∞)D.(6,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知球O是某幾何體的外接球,而該幾何體是由一個(gè)側(cè)棱長(zhǎng)為2$\sqrt{5}$的正四棱錐S-ABCD與一個(gè)高為6的正四棱柱ABCD-A1B1C1D1拼接而成,則球O的表面積為( 。
A.$\frac{100π}{3}$B.64πC.100πD.$\frac{500π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在極坐標(biāo)系中,曲線C1:ρ=2cosθ,曲線${C_2}:ρ{sin^2}θ=4cosθ$.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系xOy,曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t為參數(shù)).
(Ⅰ)求C1,C2的直角坐標(biāo)方程;
(Ⅱ)C與C1,C2交于不同四點(diǎn),這四點(diǎn)在C上的排列順序?yàn)镻,Q,R,S,求||PQ|-|RS||的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=4+5cost\\ y=5+5sint\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)矩陣M=$[\begin{array}{l}{1}&{2}\\{x}&{y}\end{array}]$,N=$[\begin{array}{l}{2}&{4}\\{-1}&{-1}\end{array}]$,若MN=$[\begin{array}{l}{0}&{2}\\{5}&{13}\end{array}]$,求矩陣M的逆矩陣M-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在△ABC中,$∠ACB=\frac{π}{6},BC=\sqrt{3},AC=4$,則AB等于( 。
A.$\sqrt{7}$B.3C.$\sqrt{11}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.將圓x2+y2-2x=0向左平移一個(gè)單位長(zhǎng)度,再把所得曲線上每一點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)變?yōu)樵瓉?lái)的$\sqrt{3}$倍得到曲線C.
(1)寫(xiě)出曲線C的參數(shù)方程;
(2)以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=$\frac{3\sqrt{2}}{2}$,若A,B分別為曲線C及直線l上的動(dòng)點(diǎn),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)$f(x)=5+lnx-\frac{kx}{x+1}$(k∈R).
(Ⅰ)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若k∈N*,且當(dāng)x∈(1,+∞)時(shí),f(x)>0恒成立,求k的最大值.($ln(3+2\sqrt{2})≈1.76$)

查看答案和解析>>

同步練習(xí)冊(cè)答案