已知函數(shù)f(x)=x2-2lnx+a(a為實常數(shù)).
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[
1
2
,2]上的值域.
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)由f(x)=2x-
2
x
,由此利用導(dǎo)數(shù)性質(zhì)能求出函數(shù)f(x)的單調(diào)區(qū)間.
(2)當x在[
1
2
,2]
上變化時,對f'(x),f(x)的變化情況列表討論,由此能求出f(x)在區(qū)間[
1
2
,2]上的值域.
解答: 解:(1)f(x)=2x-
2
x
,…(1分)
函數(shù)f(x)的定義域為{x|x>0}
令f′(x)>0,有
x2-1>0
x>0
,解之得x>1…(3分)
令f′(x)<0,有
x2-1<0
x>0
,或0<x<1…(4分)
所以函數(shù)f(x)的單調(diào)減區(qū)間為(0,1),單調(diào)增區(qū)間為(1,+∞).…(6分)
[端點1包含與否,不扣分]
(2)當x在[
1
2
,2]
上變化時,f'(x),f(x)的變化情況如下表:…(10分)

由表知,函數(shù)f(x)min=1-a,…(12分)
f(
1
2
)=(
1
2
)2-2ln
1
2
+a=
1
4
+2ln2+a
,f(2)=22-2ln2+a=4-2ln2+a,f(
1
2
)-f(2)=(
1
4
+2ln2+a)-(4-2ln2+a)=4ln2-
14
4
<0

所以f(x)max=4-2ln2+a.…(14分)
點評:本題重點考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),利用函數(shù)的性質(zhì)解決不等式、方程問題.重點考查學生的代數(shù)推理論證能力.解題時要認真審題,注意導(dǎo)數(shù)性質(zhì)的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3-
3
2
(a+2)x2+6x-3
(1)當a=-2時,求函數(shù)f(x)的極值;
(2)當a<2時,討論函數(shù)f(x)零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=1,a2=3,其前n項和為Sn,A,B,C是同一直線上的三點,其橫坐標分別為Sn+1,Sn,Sn-1(n≥2),且
AB
=
2an+1
an
BC
.在數(shù)列{bn}中,b1=1,bn+1-bn=log2(an+1).
(1)證明數(shù)列{an+1}為等比數(shù)列;
(2)設(shè)cn=
4
bn+1-1
n+1
anan+1
,數(shù)列{cn}的前n項和設(shè)為Tn,試比較Tn與1的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知公差不為0的等差數(shù)列{an}中,a1+a2+a3+a4=20,a1,a2,a4成等比數(shù)列,求集合A={x|x=an,n∈N*且100<x<200}的元素個數(shù)及所有這些元素的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,AB=4,AD=2,AA1=2,F(xiàn)是棱BC的中點,點E在棱C1D1上,且D1E=λEC1(λ為實數(shù)).
(1)當λ=
1
3
時,求直線EF與平面D1AC所成角的正弦值的大小;
(2)試問:直線EF與直線EA能否垂直?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,cosωx),其中ω>0,記函數(shù)f(x)=
a
b
,若f(x)的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)設(shè)0≤α≤
π
3
,且f(
α
2
)=
1+
3
2
,試求sinα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-3x+2=0},B={x|0<x<5,x∈N},若滿足A⊆M⊆B,求M.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列給出5個命題:
①一個正方體的三視圖必定是三個全等的正方形;
②如果空間不共線的三點到一個平面的距離都相等,則這三點所在的平面與這個平面平行;
③經(jīng)過一個角的頂點引這個角所在平面α的一條斜線l,如果斜線l與角的兩邊所成的角相等,那么斜線l在平面α上的射影是這個角的平分線;
④如果一個平面與兩個平行平面相交,那么它們的交線互相平行;
⑤如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面垂直.
其中所有正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個七層的塔,每層所點的燈的盞數(shù)都等于上面一層的2倍,一共點381盞燈,則底層所點燈的盞數(shù)是
 

查看答案和解析>>

同步練習冊答案