【題目】已知橢圓的左、右焦點(diǎn)分別為,,過點(diǎn)的直線與橢圓交于兩點(diǎn),延長交橢圓于點(diǎn),的周長為8.
(1)求的離心率及方程;
(2)試問:是否存在定點(diǎn),使得為定值?若存在,求;若不存在,請說明理由.
【答案】(1),; (2)存在點(diǎn),且.
【解析】
(1)由已知條件得,,即可計(jì)算出離心率和橢圓方程
(2)假設(shè)存在點(diǎn),分別求出直線的斜率不存在、直線的斜率存在的表達(dá)式,令其相等,求出結(jié)果
(1)由題意可知,,則,
又的周長為8,所以,即,
則,.
故的方程為.
(2)假設(shè)存在點(diǎn),使得為定值.
若直線的斜率不存在,直線的方程為,,,
則.
若直線的斜率存在,設(shè)的方程為,
設(shè)點(diǎn),,聯(lián)立,得,
根據(jù)韋達(dá)定理可得:,,
由于,,
則
因?yàn)?/span>為定值,所以,
解得,故存在點(diǎn),且.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓上一點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為B,F(xiàn)為橢圓的右焦點(diǎn),AF⊥BF,∠ABF=,,,則橢圓的離心率的取值范圍為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的焦點(diǎn)為,準(zhǔn)線為,是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足.設(shè)線段的中點(diǎn)在上的投影為,則的最大值是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求在區(qū)間上的最值;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(1)求和的直角坐標(biāo)方程;
(2)若曲線截直線所得線段的中點(diǎn)坐標(biāo)為,求的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)時(shí),解關(guān)于x的不等式;
(2)若不等式對(duì)任意恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求與直線3x+4y-7=0垂直,且與原點(diǎn)的距離為6的直線方程;
(2)求經(jīng)過直線l1:2x+3y-5=0與l2:7x+15y+1=0的交點(diǎn),且平行于直線x+2y-3=0的直線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com