【題目】已知橢圓:的左、右頂點分別為,,右焦點為,且上的動點到的距離的最大值為4,最小值為2.
(1)證明:.
(2)若直線:與相交于,兩點(,均不與,重合),且,試問是否經過定點?若經過,求出此定點坐標;若不經過,請說明理由.
科目:高中數學 來源: 題型:
【題目】對于定義域為的函數,若同時滿足下列條件:
①在內單調遞增或單調遞減;
②存在區(qū)間,使在上的值域為;
那么把叫閉函數.
(1)求閉函數符合條件②的區(qū)間;
(2)判斷函數是否為閉函數?并說明理由;
(3)若是閉函數,求實數的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.
(1)求橢圓的方程;
(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓,如圖所示,斜率為k(k>0)且不過原點的直線l交橢圓C于兩點A,B,線段AB的中點為E,射線OE交橢圓C于點G,交直線x=﹣3于點D(﹣3,m).
(1)求m2+k2的最小值;
(2)若|OG|2=|OD||OE|,求證:直線l過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著教育信息化2.0時代的到來,依托網絡進行線上培訓越來越便捷,逐步成為實現全民終身學習的重要支撐.最近某高校繼續(xù)教育學院采用線上和線下相結合的方式開展了一次300名學員參加的“國學經典誦讀”專題培訓.為了解參訓學員對于線上培訓、線下培訓的滿意程度,學院隨機選取了50名學員,將他們分成兩組,每組25人,分別對線上、線下兩種培訓進行滿意度測評,根據學員的評分(滿分100分)繪制了如下莖葉圖:
(1)根據莖葉圖判斷學員對于線上、線下哪種培訓的滿意度更高?并說明理由;
(2)求50名學員滿意度評分的中位數,并將評分不超過、超過分別視為“基本滿意”、“非常滿意”兩個等級.
(i)利用樣本估計總體的思想,估算本次培訓共有多少學員對線上培訓非常滿意?
(ii)根據莖葉圖填寫下面的列聯表:
并根據列聯表判斷能否有99.5%的把握認為學員對兩種培訓方式的滿意度有差異?
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋子中有四張卡片,分別寫有“瓷、都、文、明”四個字,有放回地從中任取一張卡片,將三次抽取后“瓷”“都”兩個字都取到記為事件,用隨機模擬的方法估計事件發(fā)生的概率.利用電腦隨機產生整數0,1,2,3四個隨機數,分別代表“瓷、都、文、明”這四個字,以每三個隨機數為一組,表示取卡片三次的結果,經隨機模擬產生了以下18組隨機數:
232 | 321 | 230 | 023 | 123 | 021 | 132 | 220 | 001 |
231 | 130 | 133 | 231 | 031 | 320 | 122 | 103 | 233 |
由此可以估計事件發(fā)生的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為F,過點的直線l與E交于A,B兩點.當l過點F時,直線l的斜率為,當l的斜率不存在時,.
(1)求橢圓E的方程.
(2)以AB為直徑的圓是否過定點?若過定點,求出定點的坐標;若不過定點,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com