【題目】如圖,在平行四邊形中,,,,分別是和的中點(diǎn),將沿著向上翻折到的位置,連接,.
(1)求證:平面;
(2)若翻折后,四棱錐的體積,求的面積.
【答案】(1)證明見解析;(2).
【解析】
(1)取的中點(diǎn),連接,由平面幾何知識(shí)可得四邊形是平行四邊形,從而可得,根據(jù)線面平行的判斷定理可得證;
(2)取的中點(diǎn),連接,過作的垂線于點(diǎn),連接根據(jù)平面幾何知識(shí)和四棱錐的體積,可得出平面,繼而可證得 是的高,根據(jù)三角形的面積公式可求得值.
(1)取的中點(diǎn),連接,∵是的中點(diǎn),∴
又∵是的中點(diǎn),∴
∴,∴四邊形是平行四邊形,∴,
又∵平面,平面,
∴平面;
(2)取的中點(diǎn),連接,過作的垂線于點(diǎn),連接則
∵四棱錐的體積,而四邊形的面積為,
設(shè)四棱錐的高為,則解得,∴,∴平面,
又∵平面,∴,又∵,∴平面,
又平面,∴,∴是的高,而在中,,
∴的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面平面ABC,P、P在平面ABC的同側(cè),二面角的平面角為鈍角,Q到平面ABC的距離為,是邊長(zhǎng)為2的正三角形,,,.
(1)求證:面平面PAB;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)設(shè)函數(shù)在處的切線方程為,若函數(shù)是上的單調(diào)增函數(shù),求的值;
(3)是否存在一條直線與函數(shù)的圖象相切于兩個(gè)不同的點(diǎn)?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的函數(shù).
(1)當(dāng)時(shí),寫出的單調(diào)區(qū)間;
(2)若關(guān)于的方程有三個(gè)不等的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).(其中為自然對(duì)數(shù)的底數(shù))
(1)若恒成立,求的最大值;
(2)設(shè),若存在唯一的零點(diǎn),且對(duì)滿足條件的不等式恒成立,求實(shí)數(shù)的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在零點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右頂點(diǎn)分別為,,右焦點(diǎn)為,且上的動(dòng)點(diǎn)到的距離的最大值為4,最小值為2.
(1)證明:.
(2)若直線:與相交于,兩點(diǎn)(,均不與,重合),且,試問是否經(jīng)過定點(diǎn)?若經(jīng)過,求出此定點(diǎn)坐標(biāo);若不經(jīng)過,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在D上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界已知函數(shù)
當(dāng),求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請(qǐng)說明理由;
若函數(shù)在上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com