【題目】對于定義域為的函數(shù),若同時滿足下列條件:
①在內(nèi)單調(diào)遞增或單調(diào)遞減;
②存在區(qū)間,使在上的值域為;
那么把叫閉函數(shù).
(1)求閉函數(shù)符合條件②的區(qū)間;
(2)判斷函數(shù)是否為閉函數(shù)?并說明理由;
(3)若是閉函數(shù),求實數(shù)的范圍.
【答案】(1);(2)見解析;(3)
【解析】
(1)根據(jù)函數(shù)的單調(diào)性得到關(guān)于的方程組,解出即可;
(2)將變形,得到的單調(diào)區(qū)間,根據(jù)閉函數(shù)的定義,判定即可得到答案;
(3)根據(jù)閉函數(shù)的定義得到方程由兩個不等的實根,通過討論,得到關(guān)于的不等式組,即可求解.
(1)由題意, 在 上遞減,則,解得,
所以,所求的區(qū)間為.
(2)在 上單調(diào)遞增,在上單調(diào)遞增,
所以,函數(shù)在定義域上不單調(diào)遞增或單調(diào)遞減,從而該函數(shù)不是閉函數(shù)
(3)若 是閉函數(shù),則存在區(qū)間 ,在區(qū)間上,
函數(shù)的值域為即 ,
所以為方程的兩個實數(shù)根,
即方程有兩個不等的實根
當時,有,解得
當 時,有,此不等式組無解.
綜上所述, .
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù))。在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的極坐標方程為。
(1)求直線的普通方程和圓的直角坐標方程;
(2)設圓與直線交于,兩點,若點的坐標為,求。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在寬為的路邊安裝路燈,燈柱高為,燈桿是半徑為的圓的一段劣弧.路燈采用錐形燈罩,燈罩頂到路面的距離為,到燈柱所在直線的距離為.設為燈罩軸線與路面的交點,圓心在線段上.
(1)當為何值時,點恰好在路面中線上?
(2)記圓心在路面上的射影為,且在線段上,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)若方程f(x)=m有4個不同的實根x1,x2,x3,x4,且x1<x2<x3<x4,則()(x3+x4)=( 。
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,橢圓:經(jīng)過點.
(1)求橢圓的標準方程;
(2)設點是橢圓上的任意一點,射線與橢圓交于點,過點的直線與橢圓有且只有一個公共點,直線與橢圓交于,兩個相異點,證明:面積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面平面ABC,P、P在平面ABC的同側(cè),二面角的平面角為鈍角,Q到平面ABC的距離為,是邊長為2的正三角形,,,.
(1)求證:面平面PAB;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的極值;
(2)設函數(shù)在處的切線方程為,若函數(shù)是上的單調(diào)增函數(shù),求的值;
(3)是否存在一條直線與函數(shù)的圖象相切于兩個不同的點?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右頂點分別為,,右焦點為,且上的動點到的距離的最大值為4,最小值為2.
(1)證明:.
(2)若直線:與相交于,兩點(,均不與,重合),且,試問是否經(jīng)過定點?若經(jīng)過,求出此定點坐標;若不經(jīng)過,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com