【題目】已知點為圓上一動點,軸于點,若動點滿足(其中為非零常數(shù))
(1)求動點的軌跡方程;
(2)當時,得到動點的軌跡為曲線,斜率為1的直線與曲線相交于,兩點,求面積的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】某大學藝術(shù)專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數(shù)小于70的概率;
(Ⅱ)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,為測量山高MN,選擇A和另一座山的山頂C為測量觀測點.從A點測得 M點的仰角∠MAN=60°,C點的仰角∠CAB=45°以及∠MAC=75°;從C點測得∠MCA=60°.已知山高BC=100m,則山高MN=m.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x),g(x)都是定義在R上的函數(shù),且滿足以下條件:
①f(x)=axg(x)(a>0,a≠1);
②g(x)≠0;
③f(x)g'(x)>f'(x)g(x);
若 ,則a= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:函數(shù) 在(﹣∞,+∞)上有極值,命題q:雙曲線 的離心率e∈(1,2).若p∨q是真命題,p∧q是假命題,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為考察高中生的性別與是否喜歡數(shù)學課程之間的關(guān)系,在某城市的某校高中生中,從男生中隨機抽取了70人,從女生中隨機抽取了50人,男生中喜歡數(shù)學課程的占,女生中喜歡數(shù)學課程的占,得到如下列聯(lián)表.
喜歡數(shù)學課程 | 不喜歡數(shù)學課程 | 合計 | |
男生 | |||
女生 | |||
合計 |
(1)請將列聯(lián)表補充完整;試判斷能否有90%的把握認為喜歡數(shù)學課程與否與性別有關(guān);
(2)從不喜歡數(shù)學課程的學生中采用分層抽樣的方法,隨機抽取6人,現(xiàn)從6人中隨機抽取2人,求抽取的學生中至少有1名是女生的概率..
附:,其中.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓C: (a>b>0)的離心率為,且過點(1, ).過橢圓C的左頂點A作直線交橢圓C于另一點P,交直線l:x=m(m>a)于點M.已知點B(1,0),直線PB交l于點N.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若MB是線段PN的垂直平分線,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點為拋物線的焦點,點在拋物線上,且.
(1)求拋物線的方程;
(2)已知點,延長交拋物線于點,證明:以點為圓心且與直線相切的圓,必與直線相切.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com