(5分)(2011•陜西)設(shè)拋物線的頂點在原點,準(zhǔn)線方程為x=﹣2,則拋物線的方程是(         )
A.y2=﹣8xB.y2=8xC.y2=﹣4xD.y2=4x
B

試題分析:根據(jù)準(zhǔn)線方程求得p,則拋物線的標(biāo)準(zhǔn)方程可得.
解:∵準(zhǔn)線方程為x=﹣2
=2
∴p=4
∴拋物線的方程為y2=8x
故選B
點評:本題主要考查了拋物線的標(biāo)準(zhǔn)方程.考查了考生對拋物線基礎(chǔ)知識的掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)拋物線的焦點為,點,線段的中點在拋物線上.設(shè)動直線與拋物線相切于點,且與拋物線的準(zhǔn)線相交于點,以為直徑的圓記為圓
(1)求的值;
(2)證明:圓軸必有公共點;
(3)在坐標(biāo)平面上是否存在定點,使得圓恒過點?若存在,求出的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的方程為,直線的方程為,點關(guān)于直線的對稱點在拋物線上.
(1)求拋物線的方程;
(2)已知,求過點及拋物線與軸兩個交點的圓的方程;
(3)已知,點是拋物線的焦點,是拋物線上的動點,求的最小值及此時點的坐標(biāo);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C1:x2=y,圓C2:x2+(y-4)2=1的圓心為點M

(1)求點M到拋物線C1的準(zhǔn)線的距離;
(2)已知點P是拋物線C1上一點(異于原點),過點P作圓C2的兩條切線,交拋物線C1于A,B兩點,若過M,P兩點的直線l垂直于AB,求直線l的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線C:的焦點為,是C上一點,,則(   )
A. 1B. 2C. 4D. 8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

[2013·江西高考]拋物線x2=2py(p>0)的焦點為F,其準(zhǔn)線與雙曲線=1相交于A,B兩點,若△ABF為等邊三角形,則p=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(3分)(2011•重慶)動圓的圓心在拋物線y2=8x上,且動圓恒與直線x+2=0相切,則動圓必過點        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知P是拋物線y2=4x上一動點,則點P到直線l:2x-y+3=0與到y(tǒng)軸的距離之和的最小值是(  )
A.B.C.2 D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的焦點坐標(biāo)為     

查看答案和解析>>

同步練習(xí)冊答案