已知P是拋物線y2=4x上一動點,則點P到直線l:2x-y+3=0與到y(tǒng)軸的距離之和的最小值是(  )
A.B.C.2 D.-1
D
由題意知,拋物線的焦點為F(1,0).設(shè)點P到直線l的距離為d,由拋物線的定義可知,點P到y(tǒng)軸的距離為|PF|-1,所以點P到直線l的距離與到y(tǒng)軸的距離之和為d+|PF|-1.易知d+|PF|的最小值為點F到直線l的距離,故d+|PF|的最小值為,所以d+|PF|-1的最小值為-1.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知拋物線y2=4x的弦AB的中點的橫坐標為2,則|AB|的最大值為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(5分)(2011•陜西)設(shè)拋物線的頂點在原點,準線方程為x=﹣2,則拋物線的方程是(         )
A.y2=﹣8xB.y2=8xC.y2=﹣4xD.y2=4x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知A、B為拋物線C:y2 = 4x上的兩個動點,點A在第一象限,點B在第四象限l1、l2分別過點A、B且與拋物線C相切,P為l1、l2的交點.
(1)若直線AB過拋物線C的焦點F,求證:動點P在一條定直線上,并求此直線方程;
(2)設(shè)C、D為直線l1、l2與直線x = 4的交點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

拋物線的焦點軸正半軸上,過斜率為的直線軸交于點,且(為坐標原點)的面積為,求拋物線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,已知點A(0,-1),B點在直線y = -3上,M點滿足,M點的軌跡為曲線C。
(1)求C的方程;
(2)P為C上的動點,l為C在P點處得切線,求O點到l距離的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知動點到點的距離為,到軸的距離為,且
(1)求點的軌跡的方程;
(2) 若直線斜率為1且過點,其與軌跡交于點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線的焦點到準線的距離是(   )
A.2B.1 C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線的準線為(    )
A.x= 8B.x=-8
C.x=4D.x=-4

查看答案和解析>>

同步練習冊答案