已知集合M={x|(x+1)(x-3)<0,x∈R},N={-1,0,1,2,3},則M∩N等于( 。
A、{0,1,2}
B、{-1,0,1}
C、{-1,0,2}
D、{1,2,3}
考點:交集及其運算
專題:集合
分析:求解一元二次不等式化簡集合M,然后直接利用交集運算求解.
解答: 解:∵M={x|(x+1)(x-3)<0,x∈R}={x|-1<x<3},
N={-1,0,1,2,3},
則M∩N={x|-1<x<3}∩{-1,0,1,2,3}={0,1,2}.
故選:A.
點評:本題考查了交集及其運算,考查了一元二次不等式的解法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列函數(shù)的奇偶性:
(1)f(x)=3x4+
1
x2
;   
(2)f(x)=
x-1
+
1-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地下車庫在排氣扇發(fā)生故障的情況下,測得空氣中一氧化碳含量達到了危險狀態(tài),經(jīng)搶修排氣扇恢復(fù)正常.排氣后4分鐘測得車庫內(nèi)的一氧化碳濃度為64ppm(ppm為濃度單位,一個ppm表示百萬分之一),再過4分鐘又測得濃度為32ppm.由檢驗知該地下車庫一氧化碳濃度y(ppm)與排氣時間t(分鐘)存在函數(shù)關(guān)系y=c(
1
2
mt(c,m為常數(shù)).
1)求c,m的值
2)若空氣中一氧化碳濃度不高于0.5ppm為正常,問至少排氣多少分鐘,這個地下車庫中的一氧化碳含量才能達到正常狀態(tài)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x2-4x+3=0}
(1)用列舉法表示集合A;
(2)寫出集合A的所有子集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合M={-1,0,1,2},N={1,0},則M∪N=( 。
A、{0,1}
B、{-1,0,1,2}
C、{-1,0,1}
D、{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(1,2,1),B(-1,3,4),D(1,1,1),若
AB
=2
PB
,求
PD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg(2x-3)的定義域為A,函數(shù)g(x)=lg(3-x)+lg(x-1)的定義域為B.
(1)求集合A,B;
(2)求A∩B,A∪∁RB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l上有三點A、B、P,若
AB
=3
BP
,則P分有向線段
AB
所成的比是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>b>c,a+2b+3c=0,則( 。
A、ab>ac
B、ac>bc
C、ab>bc
D、a|b|>c|b|

查看答案和解析>>

同步練習(xí)冊答案