【題目】

從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取500件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下圖頻率分布直方圖:

I)求這500件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均值和樣本方差(同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

II)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差.

i)利用該正態(tài)分布,求;

ii)某用戶(hù)從該企業(yè)購(gòu)買(mǎi)了100件這種產(chǎn)品,記表示這100件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間的產(chǎn)品件數(shù).利用(i)的結(jié)果,求.

附:

【答案】I;(II)(i;(ii

【解析】

試題(I)由頻率分布直方圖可估計(jì)樣本特征數(shù)眾數(shù)、中位數(shù)、均值、方差.若同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,則眾數(shù)為最高矩形中點(diǎn)橫坐標(biāo).中位數(shù)為面積等分為的點(diǎn).均值為每個(gè)矩形中點(diǎn)橫坐標(biāo)與該矩形面積積的累加值.方差是矩形橫坐標(biāo)與均值差的平方的加權(quán)平均值.(II)(i)由已知得,

,故;(ii)某用戶(hù)從該企業(yè)購(gòu)買(mǎi)了100件這種產(chǎn)品,相當(dāng)于100次獨(dú)立重復(fù)試驗(yàn),則這100件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間的產(chǎn)品件數(shù),故期望

試題(I)抽取產(chǎn)品的質(zhì)量指標(biāo)值的樣本平均值和樣本方差分別為

II)(i)由(I)知,服從正態(tài)分布,從而

ii)由(i)可知,一件產(chǎn)品的質(zhì)量指標(biāo)值位于區(qū)間的概率為,依題意知,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年春節(jié)期間,我國(guó)高速公路繼續(xù)執(zhí)行“節(jié)假日高速免費(fèi)政策”.某路橋公司為掌握春節(jié)期間車(chē)輛出行的高峰情況,在某高速收費(fèi)點(diǎn)處記錄了大年初三上午9:2010:40這一時(shí)間段內(nèi)通過(guò)的車(chē)輛數(shù),統(tǒng)計(jì)發(fā)現(xiàn)這一時(shí)間段內(nèi)共有600輛車(chē)通過(guò)該收費(fèi)點(diǎn),它們通過(guò)該收費(fèi)點(diǎn)的時(shí)刻的頻率分布直方圖如圖所示,其中時(shí)間段9:20940記作區(qū)間,9:4010:00記作,10:0010:20記作,10:2010:40記作.比方:10點(diǎn)04分,記作時(shí)刻64.

1)估計(jì)這600輛車(chē)在9:2010:40時(shí)間段內(nèi)通過(guò)該收費(fèi)點(diǎn)的時(shí)刻的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

2)為了對(duì)數(shù)據(jù)進(jìn)行分析,現(xiàn)采用分層抽樣的方法從這600輛車(chē)中抽取10輛,再?gòu)倪@10輛車(chē)中隨機(jī)抽取4輛,記9:2010:00之間通過(guò)的車(chē)輛數(shù),求的分布列與數(shù)學(xué)期望;

3)由大數(shù)據(jù)分析可知,車(chē)輛在春節(jié)期間每天通過(guò)該收費(fèi)點(diǎn)的時(shí)刻服從正態(tài)分布,其中可用這600輛車(chē)在9:2010:40之間通過(guò)該收費(fèi)點(diǎn)的時(shí)刻的平均值近似代替,可用樣本的方差近似代替(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表),已知大年初五全天共有1000輛車(chē)通過(guò)該收費(fèi)點(diǎn),估計(jì)在9:4610:40之間通過(guò)的車(chē)輛數(shù)(結(jié)果保留到整數(shù)).

參考數(shù)據(jù):若,則,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在橢圓上,且橢圓的離心率為.

(1)求橢圓的方程;

(2)若為橢圓的右頂點(diǎn),點(diǎn)是橢圓上不同的兩點(diǎn)(均異于)且滿(mǎn)足直線(xiàn)斜率之積為.試判斷直線(xiàn)是否過(guò)定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>.

1)當(dāng)時(shí),若函數(shù)在區(qū)間上有最大值,求的取值范圍;

2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓,分別為其左、右焦點(diǎn),過(guò)的直線(xiàn)與此橢圓相交于兩點(diǎn),且的周長(zhǎng)為8,橢圓的離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)在平面直角坐標(biāo)系中,已知點(diǎn)與點(diǎn),過(guò)的動(dòng)直線(xiàn)(不與軸平行)與橢圓相交于兩點(diǎn),點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn).求證:

i三點(diǎn)共線(xiàn).

ii

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若在定義域上不單調(diào),求的取值范圍;

(2)設(shè)分別是的極大值和極小值,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓C過(guò)點(diǎn)M(2,0),且右焦點(diǎn)為F(1,0),過(guò)F的直線(xiàn)l與橢圓C相交于A、B兩點(diǎn).設(shè)點(diǎn)P(4,3),記PAPB的斜率分別為k1k2

(1)求橢圓C的方程;

(2)如果直線(xiàn)l的斜率等于-1,求出k1k2的值;

(3)探討k1+k2是否為定值?如果是,求出該定值;如果不是,求出k1+k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),點(diǎn)P為平面上的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線(xiàn)l的垂線(xiàn),垂足為Q,且

求動(dòng)點(diǎn)P的軌跡C的方程;

設(shè)點(diǎn)P的軌跡Cx軸交于點(diǎn)M,點(diǎn)A,B是軌跡C上異于點(diǎn)M的不同的兩點(diǎn),且滿(mǎn)足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間和極值;

(2)設(shè)的導(dǎo)函數(shù),若對(duì)任意的恒成立,求的取值范圍;

(3)若,,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案