【題目】已知函數(shù).

(1)當時,設函數(shù),求函數(shù)的單調(diào)區(qū)間和極值;

(2)設的導函數(shù),若對任意的恒成立,求的取值范圍;

(3)若,,求證:

【答案】(1)見解析;(2);(3)見解析

【解析】

1)當a1,求得函數(shù)gx)的解析式,求導,g′(x)<0g′(x)>0,求得函數(shù)gx)的單調(diào)遞減區(qū)間和單調(diào)遞增區(qū)間,g′(x)=0,x,由函數(shù)的單調(diào)性可知x為函數(shù)gx)的極小值;

2)求得f′(x),將原不等式轉(zhuǎn)化成,2lnax2lnx1x0上恒成立,構(gòu)造輔助函數(shù),hx)=x2lnx1,求導,根據(jù)函數(shù)單調(diào)性求得hx)有最小值,即可求得實數(shù)a的取值范圍;

3)由(1)可知,根據(jù)函數(shù)的單調(diào)性可知1,可知g)>g)=ln,則ln+ln<(2ln),由基本不等式的關(guān)系可知24,ln)<0,即ln+ln4ln),根據(jù)對數(shù)函數(shù)的性質(zhì)即可得到

(1)a=1時,g(x)==xln x,∴g'(x)=1+ln x.g'(x)=0x=.

x時,g'(x)<0,g(x)單調(diào)遞減,

x時,g'(x)>0,g(x)單調(diào)遞增,

∴當x=時,g(x)取得極小值-.

(2)f'(x)=2x(ln x+ln a)+x

≤1,即2ln x+2ln a+1≤x

所以2ln ax-2ln x-1x>0上恒成立,

u(x)=x-2ln x-1,則u'(x)=1-.

u'(x)=0,得x=2.

0<x<2時,u'(x)<0u(x)單調(diào)遞減;當x>2時,u'(x)>0,u(x)單調(diào)遞增,

∴當x=2時,u(x)有最小值u(2)=1-2ln 2.

2ln a≤1-2ln 2,解得0<a.a的取值范圍是.

(3)(1)g(x)=xln x內(nèi)是減函數(shù),在上是增函數(shù).

<<<1,∴g()=()ln()>g()=ln ,

ln x1<ln().

同理ln <ln().

ln +ln<ln(x1+x2)=ln().

又∵2+≥4,當且僅當=時,取等號.

,<1,ln()<0

ln()≤4ln(),

ln+ln4ln..

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】

從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取500件,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量結(jié)果得如下圖頻率分布直方圖:

I)求這500件產(chǎn)品質(zhì)量指標值的樣本平均值和樣本方差(同一組的數(shù)據(jù)用該組區(qū)間的中點值作代表);

II)由直方圖可以認為,這種產(chǎn)品的質(zhì)量指標服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差.

i)利用該正態(tài)分布,求;

ii)某用戶從該企業(yè)購買了100件這種產(chǎn)品,記表示這100件產(chǎn)品中質(zhì)量指標值位于區(qū)間的產(chǎn)品件數(shù).利用(i)的結(jié)果,求.

附:

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形,,是邊長為的等邊三角形,

(1)證明:.

(2)求二面角的余弦值..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若關(guān)于的不等式的解集為,求實數(shù)的值;

2)設,若不等式都成立,求實數(shù)的取值范圍;

3)若時,求函數(shù)的零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若函數(shù)上無零點,則( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,已知,,平面平面,點分別是的中點,,連接.

1)若,并異面直線所成角的余弦值的大。

2)若二面角的余弦值的大小為,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,都是常數(shù),,.若的零點為,則下列不等式正確的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中錯誤的是( )

A. 先把高二年級的名學生編號為,再從編號為名學生中隨機抽取名學生,其編號為,然后抽取編號為,的學生,這樣的抽樣方法是系統(tǒng)抽樣法.

B. 正態(tài)分布在區(qū)間上取值的概率相等

C. 若兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)的值越接近于

D. 若一組數(shù)據(jù)的平均數(shù)是,則這組數(shù)據(jù)的眾數(shù)和中位數(shù)都是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為整數(shù),若對任意的,不等式恒成立,則的最大值是__________

查看答案和解析>>

同步練習冊答案