【題目】已知點在橢圓上,且橢圓的離心率為.

(1)求橢圓的方程;

(2)若為橢圓的右頂點,點是橢圓上不同的兩點(均異于)且滿足直線斜率之積為.試判斷直線是否過定點,若是,求出定點坐標,若不是,說明理由.

【答案】(1) ;(2)答案見解析.

【解析】試題分析:(1)由點在橢圓上,且橢圓的離心率為,結合性質 ,列出關于 、的方程組,求出 、,即可得橢圓的方程;(2)由題意,直線的斜率存在,可設直線的方程為 , ,聯(lián)立,得,根據(jù)韋達定理、斜率公式及直線斜率之積為,可得,解得,將以上結論代入直線方程即可得結果.

試題解析:(1)可知離心率,故有

又有點在橢圓上,代入得,

解得 ,

故橢圓的方程為.

(2)由題意,直線的斜率存在,可設直線的方程為

, , ,

聯(lián)立.

, .

∵直線斜率之積為.

而點,∴.

.

化簡得,

,

化簡得,解得

時,直線的方程為直線斜率之積為,過定點.

代入判別式大于零中,解得.

時,直線的方程為,過定點,不符合題意.

故直線過定點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線與橢圓交于點軸上方),且.設點軸上的射影為,三角形的面積為2(如圖1.

1)求橢圓的方程;

2)設平行于的直線與橢圓相交,其弦的中點為.

①求證:直線的斜率為定值;

②設直線與橢圓相交于兩點, 軸上方),點為橢圓上異于, , , 一點,直線于點, 于點,如圖2,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個焦點坐標為

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點,過點的直線(與軸不重合)與橢圓交于兩點,直線與直線相交于點,試證明:直線軸平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018貴州遵義市高三上學期第二次聯(lián)考設拋物線的準線與軸交于,拋物線的焦點為,以為焦點,離心率的橢圓與拋物線的一個交點為;自引直線交拋物線于兩個不同的點,設

)求拋物線的方程和橢圓的方程;

)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是 (為參數(shù)).

(1)將曲線的極坐標方程化為直角坐標方程;

(2)若直線與曲線相交于兩點,且,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓與直線都經過點.直線平行,且與橢圓交于兩點,直線軸分別交于兩點.

(1)求橢圓的方程;

(2)證明: 為等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)中國日報網(wǎng)報道:2017年11月13日,TOP500發(fā)布的最新一期全球超級計算機500強榜單顯示,中國超算在前五名中占據(jù)兩席,其中超算全球第一“神威太湖之光”完全使用了國產品牌處理器。為了了解國產品牌處理器打開文件的速度,某調查公司對兩種國產品牌處理器進行了12次測試,結果如下(數(shù)值越小,速度越快,單位是MIPS

測試1

測試2

測試3

測試4

測試5

測試6

測試7

測試8

測試9

測試10

測試11

測試12

品牌A

3

6

9

10

4

1

12

17

4

6

6

14

品牌B

2

8

5

4

2

5

8

15

5

12

10

21

分別表示第次測試中品牌A和品牌B的測試結果,記

)求數(shù)據(jù)的眾數(shù);

)從滿足的測試中隨機抽取兩次,求品牌A的測試結果恰好有一次大于品牌B的測試結果的概率

(Ⅲ)經過了解,前6次測試是打開含有文字和表格的文件,后6次測試是打開含有文字和圖片的文件.請你依據(jù)表中數(shù)據(jù),運用所學的統(tǒng)計知識,對這兩種國產品牌處理器打開文件的速度進行評價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】衡陽市為增強市民的環(huán)境保護意識,面向全市征召義務宣傳志愿者,現(xiàn)從符合條件的志愿者中隨機抽取100名后按年齡分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

1)若從第34,5組中用分層抽樣的方法抽取6名志愿者參加廣場的宣傳活動,則應從第3,45組各抽取多少名志愿者?

2)在(1)的條件下,該市決定在第3,4組的志愿者中隨機抽取2名志愿者介紹宣傳經驗,求第4組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,已知點以原點為極點, 軸的正半軸為極軸建立坐標系,曲線的極坐標方程為,過點作極坐標方程為的直線的平行線分別交曲線兩點.

1)寫出曲線和直線的直角坐標方程;

(2)若成等比數(shù)列,求的值.

查看答案和解析>>

同步練習冊答案