同時滿足①;②若,則的非空集合M有多少個?并寫出這些集合.

答案:略
解析:

解:按M中的元素的個數(shù)進行分類計算:

M中有1個元素時,M={3}

M中有兩個元素時,M={1,5}{24};

M中有三個元素時,M={13,5}{23,4}

M中有四個元素時,M={12,35};

M中有五個元素時,M={1,2,3,4,5}

M共有7個.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于函數(shù)y=f(x)(x∈D)若同時滿足下列兩個條件,則稱f(x)為D上的閉函數(shù).
①f(x)在D上為單調(diào)函數(shù);
②存在閉區(qū)間[a,b]⊆D,使f(x)在[a,b]上的值域也是[a,b].
(1)求閉函數(shù)y=-x3符合上述條件的區(qū)間[a,b];
(2)若f(x)=x3-3x2-9x+4,判斷f(x)是否為閉函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•普陀區(qū)二模)對于任意的n∈N*,若數(shù)列{an}同時滿足下列兩個條件,則稱數(shù)列{an}具有“性質(zhì)m”:
an+an+2
2
an+1
;   ②存在實數(shù)M,使得an≤M成立.
(1)數(shù)列{an}、{bn}中,an=n、bn=2sin
6
(n=1,2,3,4,5),判斷{an}、{bn}是否具有“性質(zhì)m”;
(2)若各項為正數(shù)的等比數(shù)列{cn}的前n項和為Sn,且c3=
1
4
,S3=
7
4
,證明:數(shù)列{Sn}具有“性質(zhì)m”,并指出M的取值范圍;
(3)若數(shù)列{dn}的通項公式dn=
t (3•2n-n)+1
2n
(n∈N*).對于任意的n≥3(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•普陀區(qū)二模)對于任意的n∈N*,若數(shù)列{an}同時滿足下列兩個條件,則稱數(shù)列{an}具有“性質(zhì)m”:
an+an+2
2
an+1
;          
②存在實數(shù)M,使得an≤M成立.
(1)數(shù)列{an}、{bn}中,an=n、bn=2sin
6
(n=1,2,3,4,5),判斷{an}、{bn}是否具有“性質(zhì)m”;
(2)若各項為正數(shù)的等比數(shù)列{cn}的前n項和為Sn,且c3=
1
4
S3=
7
4
,求證:數(shù)列{Sn}具有“性質(zhì)m”;
(3)數(shù)列{dn}的通項公式dn=
t (3•2n-n)+1
2n
(n∈N*).對于任意n∈[3,100]且n∈N*,數(shù)列{dn}具有“性質(zhì)m”,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)同時滿足下列兩個性質(zhì),則稱其為“規(guī)則函數(shù)”
①函數(shù)f(x)在其定義域上是單調(diào)函數(shù);
②在函數(shù)f(x)的定義域內(nèi)存在閉區(qū)間[a,b]使得f(x)在[a,b]上的最小值是
a
2
,且最大值是
b
2

請解答以下問題:
(Ⅰ) 判斷函數(shù)f(x)=x2-2x,(x∈(0,+∞))是否為“規(guī)則函數(shù)”?并說明理由;
(Ⅱ)判斷函數(shù)g(x)=-x3是否為“規(guī)則函數(shù)”?并說明理由.若是,請找出滿足②的閉區(qū)間[a,b];
(Ⅲ)若函數(shù)h(x)=
x-1
+t
是“規(guī)則函數(shù)”,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆安徽省六校教育研究會高三素質(zhì)測試文科數(shù)學試卷(解析版) 題型:解答題

若定義在上的函數(shù)同時滿足:①;②;③若,且,則成立.則稱函數(shù)為“夢函數(shù)”.

(1)試驗證在區(qū)間上是否為“夢函數(shù)”;

(2)若函數(shù)為“夢函數(shù)”,求的最值.

 

查看答案和解析>>

同步練習冊答案