對(duì)于函數(shù)y=f(x)(x∈D)若同時(shí)滿(mǎn)足下列兩個(gè)條件,則稱(chēng)f(x)為D上的閉函數(shù).
①f(x)在D上為單調(diào)函數(shù);
②存在閉區(qū)間[a,b]⊆D,使f(x)在[a,b]上的值域也是[a,b].
(1)求閉函數(shù)y=-x3符合上述條件的區(qū)間[a,b];
(2)若f(x)=x3-3x2-9x+4,判斷f(x)是否為閉函數(shù).
分析:(1)通過(guò)y′<0得出函數(shù)y=-x3為減函數(shù).進(jìn)而通過(guò)函數(shù)的最值,求出a,b的值.
(2)通過(guò)f′(x)≥0和f′(x)≤0,分別求出x的取值范圍,看是不是符合題設(shè)的要求.符合即為閉函數(shù).不符合則不是.
解答:解:(1)∵y=-x3,∴y′=-3x2≤0.
∴函數(shù)y=-x3為減函數(shù).
f(a)=b
f(b)=a
-3a3=b
-3b3=a.

a=-1
b=-1.
所求閉區(qū)間為[-1,1].
(2)f′(x)=3x2-6x-9.
由f′(x)≥0,得x≥3或x≤-1.
由f′(x)≤0,得-1≤x≤3.
∴f(x)在定義域內(nèi)不是單調(diào)函數(shù).
故f(x)不是閉函數(shù).
點(diǎn)評(píng):這是個(gè)知識(shí)遷移題,這類(lèi)問(wèn)題一般是考查學(xué)生的類(lèi)比猜想能力、探索問(wèn)題的能力.這類(lèi)問(wèn)題是近年高考命題的一個(gè)亮點(diǎn),很能考查學(xué)生的分析問(wèn)題、探索問(wèn)題的潛在的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)是定義在R上的奇函數(shù),且y=f(x+
π
2
)
為偶函數(shù),對(duì)于函數(shù)y=f(x)有下列幾種描述:
①y=f(x)是周期函數(shù)②x=π是它的一條對(duì)稱(chēng)軸;③(-π,0)是它圖象的一個(gè)對(duì)稱(chēng)中心;
④當(dāng)x=
π
2
時(shí),它一定取最大值;其中描述正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列五個(gè)命題:
①函數(shù)y=f(x),x∈R的圖象與直線x=a可能有兩個(gè)不同的交點(diǎn);
②函數(shù)y=log2x2與函數(shù)y=2log2x是相等函數(shù);
③對(duì)于指數(shù)函數(shù)y=2x與冪函數(shù)y=x2,總存在x0,當(dāng)x>x0 時(shí),有2x>x2成立;
④對(duì)于函數(shù)y=f(x),x∈[a,b],若有f(a)•f(b)<0,則f(x)在(a,b)內(nèi)有零點(diǎn).
⑤已知x1是方程x+lgx=5的根,x2是方程x+10x=5的根,則x1+x2=5.
其中正確的序號(hào)是
③⑤
③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•和平區(qū)一模)函數(shù)y=f(x)是定義在[a,b]上的增函數(shù),其中a,b∈R,且0<b<-a,已知y=f(x)無(wú)零點(diǎn),設(shè)F(x)=f2(x)+f2(-x),則對(duì)于函數(shù)y=F(x)有如下四種說(shuō)法:①定義域是[-b,b];②最小值是0;③是偶函數(shù);④在定義域內(nèi)單調(diào)遞增.其中正確的說(shuō)法是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•上海模擬)對(duì)于函數(shù)y=f(x)的圖象上任意兩點(diǎn)A(a,f(a)),B(b,f(b)),設(shè)點(diǎn)C分
AB
的比為λ(λ>0).若函數(shù)為f(x)=x2(x>0),則直線AB必在曲線AB的上方,且由圖象特征可得不等式
a2b2
1+λ
(
a+λb
1+λ
)
2
.若函數(shù)為f(x)=log2010x,請(qǐng)分析該函數(shù)的圖象特征,上述不等式可以得到不等式
log2010a+log2010b
1+λ
log2010
a+λb
1+λ
log2010a+log2010b
1+λ
log2010
a+λb
1+λ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在區(qū)間[-3,3]上的函數(shù)y=f(x)滿(mǎn)足f(-x)+f(x)=0,對(duì)于函數(shù)y=f(x)的圖象上任意兩點(diǎn)(x1,f(x1)),(x2,f(x2))都有(x1-x2)•[f(x1)-f(x2)]<0.若實(shí)數(shù)a,b滿(mǎn)足f(a2-2a)+f(2b-b2)≤0,則點(diǎn)(a,b)所在區(qū)域的面積為( 。
A、8B、4C、2D、1

查看答案和解析>>

同步練習(xí)冊(cè)答案