已知雙曲線C1與拋物線C2:y2=8x有相同的焦點F,它們在第一象限內的交點為M,若雙曲線C1的焦距為實軸長的2倍,則|MF|=________.

 

5

【解析】易知拋物線的焦點為(2,0),設雙曲線為=1(a>0,b>0),由題意知c=2,2c=4a.則a=1,b2=c2-a2=3,雙曲線C1的方程為x2-=1.與y2=8x聯(lián)立可解得x=3,或x=- (舍去).所以xM=3.結合拋物線的定義可得|MF|=xM+2=5.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:選4-1-2直線與圓的位置關系(解析版) 題型:填空題

如圖所示,AB是⊙O的直徑,直線CB切⊙O于點B,直線CD切⊙O于點D,CD交BA的延長線于點E.若AB=3,ED=2,則BC的長為________.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:9-2用樣本估計總體(解析版) 題型:填空題

為了調查學生每天零花錢的數(shù)量(錢數(shù)取整數(shù)元),以便引導學生樹立正確的消費觀.某市抽取1000名年齡在[2,22](單位:歲)內的學生每天的零花錢,樣本的頻率分布直方圖如圖所示,則樣本數(shù)據(jù)落在[6,14)內的頻數(shù)為________.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:9-1隨機抽樣(解析版) 題型:選擇題

某商場有四類食品,其中糧食類、植物油類、動物性食品類及果蔬類分別有40種、10種、30種、20種,現(xiàn)從中抽取一個容量為20的樣本進行食品安全檢測.若采用分層抽樣的方法抽取樣本,則抽取的植物油類與果蔬類食品種數(shù)之和是(  )

A.4 B.5 C.6 D.7

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-9圓錐曲線的綜合問題(解析版) 題型:填空題

若C(-,0),D(,0),M是橢圓+y2=1上的動點,則的最小值為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-9圓錐曲線的綜合問題(解析版) 題型:選擇題

若雙曲線=1(a>b>0)的左、右焦點分別為F1、F2,線段F1F2被拋物線y2=2bx的焦點分成7∶5的兩段,則此雙曲線的離心率為(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-8曲線與方程(解析版) 題型:選擇題

設A1,A2是橢圓=1的長軸兩個端點,P1,P2是垂直于A1A2的弦的端點,則直線A1P1與A2P2交點的軌跡方程為(  )

A.=1 B.=1

C.=1 D.=1

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-7拋物線(解析版) 題型:解答題

已知頂點在坐標原點,焦點在x軸正半軸的拋物線上有一點A(,m),A點到拋物線焦點的距離為1.

(1)求該拋物線的方程;

(2)設M(x0,y0)為拋物線上的一個定點,過M作拋物線的兩條互相垂直的弦MP,MQ,求證:PQ恒過定點(x0+2,-y0).

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-5橢圓(解析版) 題型:選擇題

已知橢圓C:=1(b>0),直線l:y=mx+1,若對任意的m∈R,直線l與橢圓C恒有公共點,則實數(shù)b的取值范圍是(  )

A.[1,4) B.[1,+∞)

C.[1,4)∪(4,+∞) D.(4,+∞)

 

查看答案和解析>>

同步練習冊答案