設函數(shù)f(x)=x--aln x(a∈R).
(1)討論f(x)的單調性;
(2)若f(x)有兩個極值點x1和x2,記過點A(x1,f(x1)),B(x2,f(x2))的直線的斜率為k.問:是否存在a,使得k=2-a?若存在,求出a的值;若不存在,請說明理由.
思路分析 先求導,通分后發(fā)現(xiàn)f′(x)的符號與a有關,應對a進行分類,依據方程的判別式來分類.
解析 (1)f(x)的定義域為(0,+∞).
f′(x)=1+-=.
令g(x)=x2-ax+1,其判別式Δ=a2-4.
①當|a|≤2時,Δ≤0,f′(x)≥0.故f(x)在(0,+∞)上單調遞增.
②當a<-2時,Δ>0,g(x)=0的兩根都小于0.在(0,+∞)上,f′(x)>0.故f(x)在(0,+∞)上單調遞增.
③當a>2時,Δ>0,g(x)=0的兩根為x1=,
x2=.
當0<x<x1時,f′(x)>0,當x1<x<x2時,f′(x)<0;
當x>x2時,f′(x)>0.故f(x)分別在(0,x1),(x2,+∞)上單調遞增,在(x1,x2)上單調遞減.
(2)由(1)知,a>2.
因為f(x1)-f(x2)=(x1-x2)+-a(ln x1-ln x2),所以,k==1+-a·.
又由(1)知,x1x2=1,于是k=2-a·.
若存在a,使得k=2-a,則=1.
即ln x1-ln x2=x1-x2.
由x1x2=1得x2--2ln x2=0(x2>1).(*)
再由(1)知,函數(shù)h(t)=t--2ln t在(0,+∞)上單調遞增,而x2>1,所以x2--2ln x2>1--2 ln 1=0.這與(*)式矛盾.
故不存在a,使得k=2-a.
科目:高中數(shù)學 來源: 題型:
已知函數(shù)f(x)=-x3+ax2-4在x=2處取得極值,若m、n∈[-1,1],則f(m)+f′(n)的最小值是( )
A.-13 B.-15
C.10 D.15
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設函數(shù)f(x)=ax3-3x+1(x∈R),若對于任意x∈[-1,1],都有f(x)≥0成立,則實數(shù)a的值為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知函數(shù)f(x)=2sin(ωx+φ),x∈R,其中ω>0,-π<φ≤π.若f(x)的最小正周期為6π,且當x=π/2時,f(x)取得最大值,則( ).
A.f(x)在區(qū)間[-2π,0]上是增函數(shù)
B.f(x)在區(qū)間[-3π,-π]上是增函數(shù)
C.f(x)在區(qū)間[3π,5π]上是減函數(shù)
D.f(x)在區(qū)間[4π,6π]上是減函數(shù)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com