心理學(xué)家發(fā)現(xiàn),學(xué)生的接受能力依賴于老師引入概念和描述問題所用的時間,上課開始時,學(xué)生的興趣激增,中間有一段不太長的時間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散,并趨于穩(wěn)定.分析結(jié)果和實驗表明,設(shè)提出和講述概念的時間為(單位:分),學(xué)生的接受能力為(值越大,表示接受能力越強),
(1)開講后多少分鐘,學(xué)生的接受能力最強?能維持多少時間?
(2)試比較開講后5分鐘、20分鐘、35分鐘,學(xué)生的接受能力的大。
(3)若一個數(shù)學(xué)難題,需要56的接受能力以及12分鐘時間,老師能否及時在學(xué)生一直達到所需接受能力的狀態(tài)下講述完這個難題?
解:(Ⅰ)由題意可知:
所以當(dāng)X=10時, 的最大值是60, …………………………………………2分
又, ="60 " …………………………………………3分
所以開講后10分鐘,學(xué)生的接受能力最強,并能維持5分鐘. ……………………4分
(Ⅱ)由題意可知: ………………………………5分
所以開講后5分鐘、20分鐘、35分鐘的學(xué)生的接受能力從大小依次是
開講后5分鐘、20分鐘、35分鐘的接受能力;………………………………………6分
(Ⅲ)由題意可知:
當(dāng)
解得: ………………………………………………7分
當(dāng) =60>56,滿足要求; ………………………………………8分
當(dāng),
解得: ……………………………………………9分
因此接受能力56及以上的時間是分鐘小于12分鐘
解析
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在定義域上是單調(diào)函數(shù),求的取值范圍;
(3)若,證明對任意,不等式…都成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知 ()
(1)求的定義域。
(2)判斷與的關(guān)系,并就此說明函數(shù)圖像的特點。
(3)求使的點的的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題共12分)
已知函數(shù)的最小值不小于, 且.
(1)求函數(shù)的解析式;
(2)函數(shù)在的最小值為實數(shù)的函數(shù),求函數(shù)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)求函數(shù)(的最小值以及相應(yīng)的的值;
(2)用20cm長得一段鐵絲折成一個面積最大的矩形,這個矩形的長、寬各為多少?并求出這個最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)寫出函數(shù)圖像的頂點坐標及其單調(diào)遞增遞減區(qū)間.
(2)若函數(shù)的定義域和值域是,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分26分)
已知函數(shù).
(1)當(dāng)時,求函數(shù)的最大值和最小值;
(2)求實數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù),并指出相應(yīng)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)當(dāng)時,求函數(shù)的定義域、值域及單調(diào)區(qū)間;
(2)對于,不等式恒成立,求正實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com