【題目】設過拋物線y2=4x的焦點F的直線l交拋物線于點A,B,若以AB為直徑的圓過點P(﹣1,2),且與x軸交于M(m,0),N(n,0)兩點,則mn=( )
A.3
B.2
C.﹣3
D.﹣2
【答案】C
【解析】解:拋物線焦點坐標為F(1,0),準線方程為x=﹣1,
設直線MN的方程為x=ty+1,A、B的坐標分別為( ,y1),( ,y2),
由 ,y2﹣4my﹣4=0,
∴y1+y2=4m,y1y2=﹣4,
x1+x2=ty1+1+ty2+1=t(y1+y2)+2=4t2+2, =2t2+1, =2t,
則圓心D(2t2+1,2t),
由拋物線的性質可知:丨AB丨=x1+x2+p=4(t2+1),
由P到圓心的距離d= ,
由題意可知:d= 丨AB丨,
解得:t=1,
則圓心為(3,2),半徑為4,
∴圓的方程方程為(x﹣3)2+(y﹣2)2=42,
則當y=0,求得與x軸的交點坐標,假設m>n,
則m=3﹣2 ,n=3+2 ,
∴mn=(3﹣2 )(3+2 )=﹣3,
所以答案是:C.
科目:高中數(shù)學 來源: 題型:
【題目】某租賃公司擁有汽車100輛.當每輛車的月租金為元時,可全部租出.當每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.若使租賃公司的月收益最大,每輛車的月租金應該定為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)()
(1)若,用“五點法”在給定的坐標系中,畫出函數(shù)在[0,π]上的圖象.
(2)若偶函數(shù),求
(3)在(2)的前提下,將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標變?yōu)樵瓉淼?/span>4倍,縱坐標不變,得到函數(shù)的圖象,求在的單調遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中, , , , 且, 分別為的中點.
(1)求證: 平面;
(2)求證: 平面;
(3)若二面角的大小為,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某污水處理廠要在一個矩形污水處理池的池底水平鋪設污水凈化管道(, 是直角頂點)來處理污水,管道越長,污水凈化效果越好.設計要求管道的接口是的中點, 分別落在線段上.已知米, 米,記.
(1)試將污水凈化管道的總長度 (即的周長)表示為的函數(shù),并求出定義域;
(2)問當取何值時,污水凈化效果最好?并求出此時管道的總長度.
(提示: .)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了解1000名高一新生的身體生長狀況,用系統(tǒng)抽樣法(按等距的規(guī)則)抽取40名同學進行檢查,將學生從1~1000進行編號,現(xiàn)已知第18組抽取的號碼為443,則第一組用簡單隨機抽樣抽取的號碼為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓.(14分)
(1)此方程表示圓,求m的取值范圍;
(2)若(1)中的圓與直線x+2y-4=0相交于M、N兩點,且(O為坐標原點),求m的值;
(3)在(2)的條件下,求以為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】田忌和齊王賽馬是歷史上有名的故事,設齊王的三匹馬分別為,田忌的三匹馬分別為 .三匹馬各比賽一次,勝兩場者為獲勝.若這六匹馬比賽的優(yōu)劣程度可以用以下不等式表示: .
(1)如果雙方均不知道對方馬的出場順序,求田忌獲勝的概率;
(2)為了得到更大的獲勝概率,田忌預先派出探子到齊王處打探實情,得知齊王第一場必出上等馬,那么,田忌應怎樣安排出馬的順序,才能使自己獲勝的概率最大?最大概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知AB⊥BC,AB=BC=a,a∈[1,3],圓A是以A為圓心、半徑為2的圓,圓B是以B為圓心、半徑為1的圓,設點E、F分別為圓A、圓B上的動點, ∥(且與同向),設∠BAE=θ(θ∈[0,π]).
(I)當a= ,且θ= 時,求的值;
(Ⅱ)用a,θ表示出,并給出一組a,θ的值,使得最。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com