【題目】如圖,已知AB⊥BC,AB=BC=a,a∈[1,3],圓A是以A為圓心、半徑為2的圓,圓B是以B為圓心、半徑為1的圓,設(shè)點(diǎn)E、F分別為圓A、圓B上的動點(diǎn), ∥(且與同向),設(shè)∠BAE=θ(θ∈[0,π]).
(I)當(dāng)a= ,且θ= 時,求的值;
(Ⅱ)用a,θ表示出,并給出一組a,θ的值,使得最。
【答案】(I). (II).
【解析】試題分析:(Ⅰ)建立平面直角坐標(biāo)系,根據(jù)向量的數(shù)量積公式計算即可,
(Ⅱ)設(shè) 利用坐標(biāo)計算得到關(guān)于的三角函數(shù),利用三角函數(shù)的性質(zhì)求出最值.
試題解析:(I)如圖,以點(diǎn)A為原點(diǎn),AB所在直線為x軸,與AB垂直的直線為y軸建立平面直角坐標(biāo)系.
則,
.
(II),
因為,所以,
以a為變量的二次函數(shù)的對稱軸
.
因為,所以當(dāng)時, 的最小值為,
又,所以的最小值為,此時.
所以,當(dāng), 時, 的最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)過拋物線y2=4x的焦點(diǎn)F的直線l交拋物線于點(diǎn)A,B,若以AB為直徑的圓過點(diǎn)P(﹣1,2),且與x軸交于M(m,0),N(n,0)兩點(diǎn),則mn=( )
A.3
B.2
C.﹣3
D.﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx有兩個極值點(diǎn)x1、x2 , 且x1<x2 , 若x1+2x0=3x2 , 函數(shù)g(x)=f(x)﹣f(x0),則g(x)( )
A.恰有一個零點(diǎn)
B.恰有兩個零點(diǎn)
C.恰有三個零點(diǎn)
D.至多兩個零點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱中,底面是梯形, .
(Ⅰ)求證: ;
(Ⅱ)若,點(diǎn)為線段的中點(diǎn).請在線段上找一點(diǎn),使平面,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市上年度電價為0.80元/千瓦時,年用電量為千瓦時.本年度計劃將電價降到0.55元/千瓦時~0.7元/千瓦時之間,而居民用戶期望電價為0.40元/千瓦時(該市電力成本價為0.30元/千瓦時),經(jīng)測算,下調(diào)電價后,該城市新增用電量與實(shí)際電價和用戶期望電價之差成反比,比例系數(shù)為.試問當(dāng)?shù)仉妰r最低為多少元/千瓦時,可保證電力部門的收益比上年度至少增加20%.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示, 是圓柱的母線, 是圓柱底面圓的直徑, 是底面圓周上異于的任意一點(diǎn), .
(1)求證: ;
(2)求三棱錐體積的最大值,并寫出此時三棱錐外接球的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過點(diǎn), 和直線相切.
(1)求圓的方程;
(2)若直線經(jīng)過點(diǎn),并且被圓截得的弦長為2,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為CC1和BB1的中點(diǎn),則異面直線AE與D1F所成角的余弦值為( )
A.0
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)判斷函數(shù)的奇偶性;
(2)求證:函數(shù)在為單調(diào)增函數(shù);
(3)求滿足的的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com