【題目】某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為元時,可全部租出.當(dāng)每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.若使租賃公司的月收益最大,每輛車的月租金應(yīng)該定為__________

【答案】4050

【解析】設(shè)每輛車的月租金定為元,則租賃公司的月收益:

當(dāng), 最大,最大值為即當(dāng)每車輛的月租金定為元時,租賃公司的月收益最大,最大月收益是,故答案為.

【思路點(diǎn)睛】本題主要考查閱讀能力、數(shù)學(xué)建模能力和化歸思想以及幾何概型概率公式,屬于難題. 與實(shí)際應(yīng)用相結(jié)合的題型也是高考命題的動向,這類問題的特點(diǎn)是通過現(xiàn)實(shí)生活的事例考查書本知識,解決這類問題的關(guān)鍵是耐心讀題、仔細(xì)理解題,只有吃透題意,才能將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型進(jìn)行解答. 解答本題的關(guān)鍵是:將租賃公司的月收益表示為關(guān)于每輛車的月租金的函數(shù),然后利用二次函數(shù)的性質(zhì)解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的圖象如圖所示,為了得到函數(shù)的圖象,可以把函數(shù)的圖象( )

A. 每個點(diǎn)的橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),再向左平移個單位

B. 每個點(diǎn)的橫坐標(biāo)縮短到原來的2倍(縱坐標(biāo)不變),再向左平移個單位

C. 先向左平移個單位,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變)

D. 先向左平移個單位,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的(縱坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(文科)設(shè)函數(shù)f(x)=x2﹣2ax﹣8a2(a>0),記不等式f(x)≤0的解集為A.
(1)當(dāng)a=1時,求集合A;
(2)若(﹣1,1)A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)y=3sin(2x +

(1)求最小正周期、對稱軸和對稱中心;

(2)簡述此函數(shù)圖象是怎樣由函數(shù)y=sinx的圖象作變換得到的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)S{x|xmn,m、nZ}

(1)a∈Z,則a是否是集合S中的元素?

(2)S中的任意兩個x1、x2,則x1x2、x1·x2是否屬于S?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn)的橢圓,右焦點(diǎn)(1,0),且過
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求斜率為2的一組平行弦的中點(diǎn)軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,且滿足.

(1)判斷函數(shù)上的單調(diào)性,并用定義證明;

(2)設(shè)函數(shù),在區(qū)間上的最大值;

(3)若存在實(shí)數(shù)m,使得關(guān)于x的方程恰有4個不同的正根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知線段AB的兩個端點(diǎn)A、B分別在x軸和y軸上滑動,且∣AB∣=2

(1)求線段AB的中點(diǎn)P的軌跡C的方程;

(2)求過點(diǎn)M(1,2)且和軌跡C相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)過拋物線y2=4x的焦點(diǎn)F的直線l交拋物線于點(diǎn)A,B,若以AB為直徑的圓過點(diǎn)P(﹣1,2),且與x軸交于M(m,0),N(n,0)兩點(diǎn),則mn=( )
A.3
B.2
C.﹣3
D.﹣2

查看答案和解析>>

同步練習(xí)冊答案