【題目】已知函數(shù)若在區(qū)間上的最大值為,求它在該區(qū)間上的最小值.
【答案】.
【解析】試題分析:對函數(shù)求導,判斷出單調(diào)性,求出函數(shù)的最大值, 又最大值為,可求出a值,代回求出函數(shù)的最小值.
試題解析:
f′(x)=-3x2+6x+9.令f′(x)=0,即-3x2+6x+9=0,解得x1=-1,x2=3(舍去).當x變化時,f′(x),f(x)的變化情況如下表:
x | -2 | (-2,-1) | -1 | (-1,2) | 2 |
f′(x) | - | 0 | + | ||
f(x) | 2+a | -5+a | 22+a |
由此得f(2),f(-1)分別是f(x)在區(qū)間[-2,2]上的最大值和最小值,∴f(2)=22+a=20,∴a=-2,
從而得函數(shù)f(x)在[-2,2]上的最小值為f(-1)=-5+a=-7.
科目:高中數(shù)學 來源: 題型:
【題目】“北祠堂”是我校著名的一支學生樂隊,對于2015年我!靶@周末文藝廣場”活動中“北祠堂”樂隊的表現(xiàn),在高一年級學生中投票情況的統(tǒng)計結果見表:
喜愛程度 | 非常喜歡 | 一般 | 不喜歡 |
人數(shù) | 500 | 200 | 100 |
現(xiàn)采用分層抽樣的方法從所有參與對“北祠堂”投票的800名學生中抽取一個容量為n的樣本,若從不喜歡“北祠堂”的100名學生中抽取的人數(shù)是5人.
(1)求n的值;
(2)若從不喜歡“北祠堂”的學生中抽取的5人中恰有3名男生(記為a1 , a2 , a3)2名女生(記為b1 , b2),現(xiàn)將此5人看成一個總體,從中隨機選出2人,列出所有可能的結果;
(3)在(2)的條件下,求選出的2人中至少有1名女生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于維向量,若對任意均有或,則稱為維向量. 對于兩個維向量定義.
(1)若, 求的值;
(2)現(xiàn)有一個維向量序列: 若且滿足: ,求證:該序列中不存在維向量.
(3) 現(xiàn)有一個維向量序列: 若且滿足: ,若存在正整數(shù)使得為維向量序列中的項,求出所有的.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}的前n項和為Sn=2n2 , {bn}為等比數(shù)列,且a1=b1 , b2(a2﹣a1)=b1 .
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設cn= ,求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊分別是a、b、c滿足:cosAcosC+sinAsinC+cosB= ,且a,b,c成等比數(shù)列,
(1)求角B的大;
(2)若 + = ,a=2,求三角形ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com