【題目】“北祠堂”是我校著名的一支學生樂隊,對于2015年我!靶@周末文藝廣場”活動中“北祠堂”樂隊的表現,在高一年級學生中投票情況的統計結果見表:
喜愛程度 | 非常喜歡 | 一般 | 不喜歡 |
人數 | 500 | 200 | 100 |
現采用分層抽樣的方法從所有參與對“北祠堂”投票的800名學生中抽取一個容量為n的樣本,若從不喜歡“北祠堂”的100名學生中抽取的人數是5人.
(1)求n的值;
(2)若從不喜歡“北祠堂”的學生中抽取的5人中恰有3名男生(記為a1 , a2 , a3)2名女生(記為b1 , b2),現將此5人看成一個總體,從中隨機選出2人,列出所有可能的結果;
(3)在(2)的條件下,求選出的2人中至少有1名女生的概率.
科目:高中數學 來源: 題型:
【題目】如圖所示的程序框圖表示的算法功能是( )
A. 計算小于100的奇數的連乘積
B. 計算從1開始的連續(xù)奇數的連乘積
C. 從1開始的連續(xù)奇數的連乘積,當乘積大于或等于100時,計算奇數的個數
D. 計算1×3×5×…×n≥100時的最小的n的值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2016高考天津文數】某化肥廠生產甲、乙兩種混合肥料,需要A,B,C三種主要原料.生產1車皮甲種肥料和生產1車皮乙種肥料所需三種原料的噸數如下表所示:
現有A種原料200噸,B種原料360噸,C種原料300噸,在此基礎上生產甲、乙兩種肥料.已知生產1車皮甲種肥料,產生的利潤為2萬元;生產1車皮乙種肥料,產生的利潤為3萬元.分別用x,y計劃表示生產甲、乙兩種肥料的車皮數.
(Ⅰ)用x,y列出滿足生產條件的數學關系式,并畫出相應的平面區(qū)域;
(Ⅱ)問分別生產甲、乙兩種肥料各多少車皮,能夠產生最大的利潤?并求出此最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商店會員活動日.
(Ⅰ)隨機抽取50名會員對商場進行綜合評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區(qū)間為[40,50),[50,60),…,[80,90),[90,100].
(1)求頻率分布直方圖中的值;
(2)估計會員對商場的評分不低于80的概率.
(Ⅱ)采取摸球兌獎的方式對會員進行返代金券活動,每位會員從一個裝有5個標有面值的球(2個所標的面值為300元,其余3個均為100元)的袋中一次性隨機摸出2個球,球上所標的面值之和為該會員所獲的代金券金額.求某會員所獲得獎勵超過400元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數據資料,算得 , =20, =184, =720.
(1)求家庭的月儲蓄y關于月收入x的線性回歸方程 ;
(2)若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為: = , = .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在等比數列中, ,且的等比中項為.
(1)求數列的通項公式;
(2)設,數列的前項和為,是否存在正整數,使得對任意恒成立?若存在,求出正整數的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin(ωx+φ)(其中ω>0|φ|< )圖象相鄰對稱軸的距離為 ,一個對稱中心為(﹣ ,0),為了得到g(x)=cosωx的圖象,則只要將f(x)的圖象( )
A.向右平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向左平移 個單位
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩人約定在中午12時到下午1時之間到某站乘公共汽車,又知這段時間內有4班公共汽車.設到站時間分別為12:15,12:30,12:45,1:00.如果他們約定:
①見車就乘;
②最多等一輛.
試分別求出在兩種情況下兩人同乘一輛車的概率.假設甲乙兩人到達車站的時間是相互獨立的,且每人在中午12點到1點的任意時刻到達車站是等可能的.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com