精英家教網 > 高中數學 > 題目詳情

【題目】“北祠堂”是我校著名的一支學生樂隊,對于2015年我!靶@周末文藝廣場”活動中“北祠堂”樂隊的表現,在高一年級學生中投票情況的統計結果見表:

喜愛程度

非常喜歡

一般

不喜歡

人數

500

200

100

現采用分層抽樣的方法從所有參與對“北祠堂”投票的800名學生中抽取一個容量為n的樣本,若從不喜歡“北祠堂”的100名學生中抽取的人數是5人.
(1)求n的值;
(2)若從不喜歡“北祠堂”的學生中抽取的5人中恰有3名男生(記為a1 , a2 , a3)2名女生(記為b1 , b2),現將此5人看成一個總體,從中隨機選出2人,列出所有可能的結果;
(3)在(2)的條件下,求選出的2人中至少有1名女生的概率.

【答案】
(1)解:抽樣比例為 ,


(2)解:Ω={a1a2,a1a3,a2a3,a1b1,a1b2,a2b1,a2b2,a3b1,a3b2,b1b2},共10種可能的結果;
(3)解:記事件“選出的2人中至少有1名女生”為A,

則A={a1b1,a1b2,a2b1,a2b2,a3b1,a3b2,b1b2}其含有7種結果,

故選出的2人中至少有1名女生的概率


【解析】(1)先求出抽樣比例,由此能求出n的值.(2)利用列舉法能列出所有可能的結果.(3)記事件“選出的2人中至少有1名女生”為A,利用列舉法求出事件A含有7種結果,由此能求出選出的2人中至少有1名女生的概率.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖所示的程序框圖表示的算法功能是(  )

A. 計算小于100的奇數的連乘積

B. 計算從1開始的連續(xù)奇數的連乘積

C. 1開始的連續(xù)奇數的連乘積,當乘積大于或等于100計算奇數的個數

D. 計算1×3×5×…×n100時的最小的n的值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【2016高考天津文數】某化肥廠生產甲、乙兩種混合肥料,需要A,B,C三種主要原料.生產1車皮甲種肥料和生產1車皮乙種肥料所需三種原料的噸數如下表所示:

現有A種原料200噸,B種原料360噸,C種原料300噸,在此基礎上生產甲、乙兩種肥料.已知生產1車皮甲種肥料,產生的利潤為2萬元;生產1車皮乙種肥料,產生的利潤為3萬元.分別用x,y計劃表示生產甲、乙兩種肥料的車皮數.

()用x,y列出滿足生產條件的數學關系式,并畫出相應的平面區(qū)域;

()問分別生產甲、乙兩種肥料各多少車皮,能夠產生最大的利潤?并求出此最大利潤.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商店會員活動日.

(Ⅰ)隨機抽取50名會員對商場進行綜合評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區(qū)間為[40,50),[50,60),…,[80,90),[90,100].

(1)求頻率分布直方圖中的值;

(2)估計會員對商場的評分不低于80的概率.

(Ⅱ)采取摸球兌獎的方式對會員進行返代金券活動,每位會員從一個裝有5個標有面值的球(2個所標的面值為300元,其余3個均為100元)的袋中一次性隨機摸出2個球,球上所標的面值之和為該會員所獲的代金券金額.求某會員所獲得獎勵超過400元的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數據資料,算得 =20, =184, =720.
(1)求家庭的月儲蓄y關于月收入x的線性回歸方程 ;
(2)若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為: = =

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在等比數列中, ,且的等比中項為.

1)求數列的通項公式;

2)設,數列的前項和為,是否存在正整數,使得對任意恒成立?若存在,求出正整數的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sin(ωx+φ)(其中ω>0|φ|< )圖象相鄰對稱軸的距離為 ,一個對稱中心為(﹣ ,0),為了得到g(x)=cosωx的圖象,則只要將f(x)的圖象(
A.向右平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向左平移 個單位

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩人約定在中午12時到下午1時之間到某站乘公共汽車,又知這段時間內有4班公共汽車.設到站時間分別為12:15,12:30,12:45,1:00.如果他們約定:
①見車就乘;
②最多等一輛.
試分別求出在兩種情況下兩人同乘一輛車的概率.假設甲乙兩人到達車站的時間是相互獨立的,且每人在中午12點到1點的任意時刻到達車站是等可能的.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數在區(qū)間上的最大值為,求它在該區(qū)間上的最小值.

查看答案和解析>>

同步練習冊答案