19.參數(shù)方程$\left\{\begin{array}{l}x=3+4cosθ\\ y=-2+4sinθ\end{array}\right.$(θ為參數(shù)),化為普通方程為(x-3)2+(y+2)2=16.

分析 由cos2θ+sin2θ=1,能把參數(shù)方程$\left\{\begin{array}{l}x=3+4cosθ\\ y=-2+4sinθ\end{array}\right.$(θ為參數(shù))轉(zhuǎn)化為普通方程.

解答 解:∵參數(shù)方程$\left\{\begin{array}{l}x=3+4cosθ\\ y=-2+4sinθ\end{array}\right.$(θ為參數(shù)),
∴$\left\{\begin{array}{l}{4cosθ=x-3}\\{4sinθ=y+2}\end{array}\right.$(θ為參數(shù)),
由cos2θ+sin2θ=1,
得到參數(shù)方程$\left\{\begin{array}{l}x=3+4cosθ\\ y=-2+4sinθ\end{array}\right.$(θ為參數(shù))的普通方程為:(x-3)2+(y+2)2=16.
故答案為:(x-3)2+(y+2)2=16.

點評 本題考查圓的普通方程的求法、直角坐標方程、參數(shù)方程的互化等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.在直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=-t\\ y=\sqrt{3}t\end{array}\right.$(t為參數(shù),-1≤t≤1),當t=1時,曲線C1上的點為A,當t=-1時,曲線C1上的點為B,以O為極點,x軸的正半軸為極軸建立極坐標系.曲線C2的極坐標方程$ρ=\frac{6}{{\sqrt{4+5{{sin}^2}θ}}}$
(Ⅰ) 求線段AB的極坐標方程;C2的參數(shù)方程
(Ⅱ) 設M是曲線C2上的動點,求|MA|2+|MB|2最大值及取最大值時點M的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知數(shù)列{an}中,a3=2,a7=1,若數(shù)列$\left\{{\frac{1}{{1+{a_n}}}}\right\}$是等差數(shù)列,則a11等于( 。
A.0B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知向量$\vec a=(1,2)$,$\vec b=(1,0)$,$\vec c=(3,4)$.若λ為實數(shù),$(\overrightarrow a+λ\overrightarrow b)∥\overrightarrow c$,則λ=( 。
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=(x2-a+1)ex,g(x)=(x2-2)ex+2
(1)若函數(shù)f(x)在區(qū)間[-2,2]上是單調(diào)函數(shù),求實數(shù)a的取值范圍;
(2)若f(x)有兩個不同的極值點m,n(m<n),且2(m+n)≤mn-1,記F(x)=e2f(x)+g(x),求F(m)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=ex-ex-1,其中e為自然對數(shù)的底數(shù).函數(shù)g(x)=(2-e)x.
(1)求函數(shù)h(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)若函數(shù)$F(x)=\left\{\begin{array}{l}f(x),x≤m\\ g(x),x>m\end{array}\right.$的值域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知x+y+z=1.
證明:(1)x2+y2+z2≥xy+yz+zx,
(2)x2+y2+z2≥$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.一個袋中裝有6個紅球和4個白球(這10個球各不相同),不放回地依次摸出2個球,在第一次摸出紅球的條件下,第二次摸出紅球的概率為$\frac{5}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知向量$\overrightarrow a$與$\overrightarrow b$的夾角為60°,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=2,則|$\overrightarrow{a}$-$\overrightarrow$|=2.

查看答案和解析>>

同步練習冊答案