10.已知數(shù)列{an}中,a3=2,a7=1,若數(shù)列$\left\{{\frac{1}{{1+{a_n}}}}\right\}$是等差數(shù)列,則a11等于( 。
A.0B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{2}$

分析 由已知結(jié)合等差數(shù)列的性質(zhì)列式計算.

解答 解:∵數(shù)列$\left\{{\frac{1}{{1+{a_n}}}}\right\}$是等差數(shù)列,
∴$\frac{1}{1+{a}_{3}}+\frac{1}{1+{a}_{11}}=\frac{2}{1+{a}_{7}}$,
∵a3=2,a7=1,
∴$\frac{2}{1+1}=\frac{1}{1+2}+\frac{1}{1+{a}_{11}}$,解得${a}_{11}=\frac{1}{2}$.
故選:D.

點評 本題考查等差數(shù)列的通項公式,考查了等差數(shù)列的性質(zhì),是基礎(chǔ)的計算題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

20.若復數(shù)z=2-3i,則在復平面內(nèi),z對應的點的坐標是(2,-3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.復數(shù)z滿足z=$\frac{7+i}{1-2i}$(i為虛數(shù)單位),則復數(shù)z的共軛復數(shù)$\overline{z}$=( 。
A.1+3iB.1-3iC.3-iD.3+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.(1)已知a>0,b>0,$\frac{1}$-$\frac{1}{a}$>1.求證:$\sqrt{1+a}$>$\frac{1}{\sqrt{1-b}}$.
(2)用數(shù)學歸納法證明$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{n+n}$>$\frac{11}{24}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an+1-2an}(n∈N*)是公比為2的等比數(shù)列,其中a1=1,a2=4.
(Ⅰ)證明:數(shù)列$\{\frac{a_n}{2^n}\}$是等差數(shù)列;
(Ⅱ)求數(shù)列{an}的前n項和Sn;
( III)記數(shù)列${c_n}=\frac{{2{a_n}-2n}}{n},(n≥2)$,證明:$\frac{1}{2}-{(\frac{1}{2})^n}<\frac{1}{c_2}+\frac{1}{c_3}+…+\frac{1}{c_n}<1-{(\frac{1}{2})^{n-1}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.△ABC中,sinA:sinB:sinC=4:5:6,.則a:b:c=4:5:6,cosA:cosB:cosC=12:9:2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.如圖所示,在排成4×4方陣的16個點中,中心位置4個點在某圓內(nèi),其余12個點在圓外.從16個點中任選3點,作為三角形的頂點,其中至少有一個頂點在圓內(nèi)的三角形共有312個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.參數(shù)方程$\left\{\begin{array}{l}x=3+4cosθ\\ y=-2+4sinθ\end{array}\right.$(θ為參數(shù)),化為普通方程為(x-3)2+(y+2)2=16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知A(3,2)和B(-1,4)兩點到直線mx+y+3=0的距離相等,則m的值為-6或$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案