定義:以平面內(nèi)不共線的兩個(gè)向量
p
q
所在直線為x軸和y軸建立坐標(biāo)系,坐標(biāo)原點(diǎn)為O,對(duì)于平面內(nèi)任意一點(diǎn)M,如果滿足
OM
=x
p
+y
q
,則稱點(diǎn)M的坐標(biāo)為(x,y).已知|
p
|=1,|
q
|=2,向量
p
,
q
的夾角為60°,如果A(1,1),B(2,3),C(-2,-1),則
OC
AB
的值是( 。
A、-4
B、-15
C、-
13
2
D、-10
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:由|
p
|=1,|
q
|=2,向量
p
q
的夾角為60°,可得
p
q
=|
p
| |
q
|cos60°
.由定義可得:
OC
=-2
p
-
q
,
AB
=
OB
-
OA
=(2
p
+3
q
)-(
p
+
q
)
=
p
+2
q
.再利用數(shù)量積運(yùn)算即可得出.
解答: 解:由|
p
|=1,|
q
|=2,向量
p
q
的夾角為60°,∴
p
q
=|
p
| |
q
|cos60°
=1×2×
1
2
=1.
OC
=-2
p
-
q
,
AB
=
OB
-
OA
=(2
p
+3
q
)-(
p
+
q
)
=
p
+2
q

OC
AB
=(-2
p
-
q
)•(
p
+2
q
)
=-2
p
2
-2
q
2
-5
p
q
=-2-2×22-5=-15.
故選:B.
點(diǎn)評(píng):本題考查了向量數(shù)量積的定義及其性質(zhì)、向量坐標(biāo)的新定義,考查了推理能力集合計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x
,x≥1
1
x
,0<x<1
2x,x<0
,則f[f[f(-2)]]=(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)
5(2+i)
i-2
+4+i的共軛復(fù)數(shù)是( 。
A、1-3i
B、1+3i
C、-1-
7
3
i
D、-1+
7
3
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)
(1+i)4
1-i
+2等于( 。
A、2-2iB、-2i
C、1-iD、2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P在拋物線y2=8x上,那么點(diǎn)P到點(diǎn)Q(3,-1)的距離與點(diǎn)P到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)P的坐標(biāo)為( 。
A、(
1
4
,-1)
B、(
1
8
,-1)
C、(3,2
6
D、(3,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)口袋內(nèi)有大小、形狀相同的6個(gè)白球和5個(gè)黑球,從中隨機(jī)取出3個(gè)球,則至少取到2個(gè)白球的概率為(  )
A、
9
11
B、
10
11
C、
20
33
D、
19
33

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2-x+c(a,c∈R)的圖象在x=1處的切線斜率為4.
(Ⅰ)若函數(shù)f(x)圖象過(guò)點(diǎn)(0,-2),求f(x)的最大值;
(Ⅱ)設(shè)函數(shù)g(x)=[f(x)-x3]•ex,若函數(shù)g(x)在x∈[-2,3]上單調(diào)遞增,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-a(x-1),g(x)=ex
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)過(guò)原點(diǎn)分別作函數(shù)f(x)與g(x)的切線,且兩切線的斜率互為倒數(shù),證明:a=0或1<a<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某花店每天以每枝10元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干支玫瑰花,并開(kāi)始以每枝20元的價(jià)格出售,已知該花店的營(yíng)業(yè)時(shí)間為8小時(shí),若前7小時(shí)內(nèi)所購(gòu)進(jìn)的玫瑰花沒(méi)有售完,則花店對(duì)沒(méi)賣出的玫瑰花以每枝5元的價(jià)格低價(jià)處理完畢(根據(jù)經(jīng)驗(yàn),1小時(shí)內(nèi)完全能夠把玫瑰花低價(jià)處理完畢,且處理完畢后,當(dāng)天不再購(gòu)進(jìn)玫瑰花).該花店統(tǒng)計(jì)了100天內(nèi)玫瑰花在每天的前7小時(shí)內(nèi)的需求量n(單位:枝,n∈N*)(由于某種原因需求量頻數(shù)表中的部分?jǐn)?shù)據(jù)被污損而無(wú)法看清),制成如下表格(注:x,y∈N*;視頻率為概率).
前7小時(shí)內(nèi)的需求量n14151617
頻數(shù)1020xy
(Ⅰ)若花店一天購(gòu)進(jìn)16枝玫瑰花,X表示當(dāng)天的利潤(rùn)(單位:元),求X的分布列及數(shù)學(xué)期望;
(Ⅱ)若花店每天購(gòu)進(jìn)16枝玫瑰花所獲得的平均利潤(rùn)比每天購(gòu)進(jìn)17枝玫瑰花所獲得的平均利潤(rùn)大,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案