1.某校開設(shè)A類選修課3門,B類選修課3門,一位同學(xué) 從中選3門.若要求兩類課程中各至少選一門,則不同的選法共有( 。
A.3種B.6種C.9種D.18種

分析 據(jù)題意,分2種情況討論:①、若從A類課程中選1門,從B類課程中選2門,②、若從A類課程中選2門,從B類課程中選1門,分別求出每一種情況的選法數(shù)目,由加法原理計算可得答案.

解答 解:根據(jù)題意,分2種情況討論:
①、若從A類課程中選1門,從B類課程中選2門,有C31•C32=9種選法;
②、若從A類課程中選2門,從B類課程中選1門,有C32•C31=9種選法;
則兩類課程中各至少選一門的選法有9+9=18種;
故選:D.

點評 本題考查分類計數(shù)原理的應(yīng)用,注意“兩類課程中各至少選一門”這一條件,進行分類討論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.要從8名男醫(yī)生和7名女醫(yī)生中選5人組成一個醫(yī)療隊,如果其中至少有2名男醫(yī)生和至少有2名女醫(yī)生,則不同的選法種數(shù)為( 。
A.(C${\;}_{8}^{3}$+C${\;}_{7}^{2}$)(C${\;}_{7}^{3}$+C${\;}_{8}^{2}$)B.(C${\;}_{8}^{3}$+C${\;}_{7}^{2}$)+(C${\;}_{7}^{3}$+C${\;}_{8}^{2}$)
C.C${\;}_{8}^{3}$C${\;}_{7}^{2}$+C${\;}_{7}^{3}$C${\;}_{8}^{2}$D.C${\;}_{8}^{3}$C${\;}_{7}^{2}$+C${\;}_{7}^{3}$+C${\;}_{11}^{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC,BC=3,AB=$\sqrt{6},∠C=\frac{π}{4}$,則∠A=$\frac{π}{3}或\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在某小學(xué)體育素質(zhì)達標(biāo)運動會上,對10名男生和10名女生在一分鐘跳繩的次數(shù)進行統(tǒng)計,得到如下所示莖葉圖:
(1)已知男生組中數(shù)據(jù)的中位數(shù)為125,女生組數(shù)據(jù)的平均數(shù)為124,求x,y的值;
(2)從一分鐘內(nèi)跳繩次數(shù)不低于110次且不高于120次的學(xué)生中任取兩名,求兩名學(xué)生中至少有一名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\frac{{\sqrt{3}}}{2}sin(2x+\frac{π}{3})-{cos^2}x+\frac{1}{2}$(x∈R),則下列說法正確的是(  )
A.函數(shù)f(x)的最小正周期為$\frac{π}{2}$
B.函數(shù)f(x)的圖象關(guān)于y軸對稱
C.點$(\frac{π}{6},0)$為函數(shù)f(x)圖象的一個對稱中心
D.函數(shù)f(x)的最大值為$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某工廠為了解用電量y與氣溫x℃之間的關(guān)系,隨機統(tǒng)計了5天的用電量與當(dāng)天氣溫,得到如下統(tǒng)計表:
曰期8月1曰8月7日8月14日8月18日8月25日
平均氣溫(℃)3330323025
用電量(萬度)3835413630
$\sum_{i=1}^{5}$xiyi=5446,$\sum_{i=1}^{5}$xi2=4538,$\widehat$=$\frac{\sum_{i=1}^{5}{x}_{i}{y}_{i}-5\overline{x}\overline{y}}{\sum_{i=1}^{5}{{x}_{i}}^{2}-5{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$
(1)請根據(jù)表中的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.據(jù)氣象預(yù)報9月3日的平均氣溫是 23℃,請預(yù)測9月3日的用電量;(結(jié)果保留整數(shù))
(2)請從表中任選兩天,記用電量(萬度)超過35的天數(shù)為ξ,求ξ的概率分布列,并求其數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知i是虛數(shù)單位,若復(fù)數(shù)z=$\frac{m+i}{1+2i}$(m∈R)是純虛數(shù),則m=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的各項均為正數(shù),a1=1,前n項和為Sn,且an+12-nλ2-1=2λSn,λ為正常數(shù).
(1)求數(shù)列{an}的通項公式;
(2)記bn=$\frac{{S}_{n}}{{a}_{n}}$,Cn=$\frac{1}{{S}_{n}}$+$\frac{1}{{S}_{k-n}}$(k,n∈N*,k≥2n+2).
       求證:①bn<bn+1;
                 ②Cn>Cn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知α是第三象限角,則$\frac{α}{2}$是( 。
A.第一象限角B.第二象限角
C.第一或第四象限角D.第二或第四象限角

查看答案和解析>>

同步練習(xí)冊答案