已知數(shù)列{an}滿足a1=1,a2=2,an+2=(1+cos2
2
)•an+sin2
2
(n∈N*),則該數(shù)列{an}的前n項(xiàng)和為
 
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:先利用題中條件找到數(shù)列的特點(diǎn),即其奇數(shù)項(xiàng)構(gòu)成了首項(xiàng)為1,公差為1的等差數(shù)列,而其偶數(shù)項(xiàng)則構(gòu)成了首項(xiàng)為2,公比為2的等比數(shù)列,再對其和用分組求和的方法找到即可.
解答: 解:由題中條件知,a1=1,a2=2,a3=a1+1=2,a4=2a2+0=4,a5=a3+1=3,a6=2a4=8…
即其奇數(shù)項(xiàng)構(gòu)成了首項(xiàng)為1,公差為1的等差數(shù)列,而其偶數(shù)項(xiàng)則構(gòu)成了首項(xiàng)為2,公比為2的等比數(shù)列,
∴當(dāng)n為奇數(shù)時,sn=
n+1
2
×1+
n+1
2
(
n+1
2
-1)
2
×1+
2(1-2
n-1
2
)
1-2
=
(n+1)(n+3)
8
+2
n+1
2
-2,
當(dāng)n為偶數(shù)時,sn=
n
2
×1
+
n
2
(
n
2
-1)
2
×1+
2(1-2
n
2
)
1-2
=
n(n+2)
8
+2
n+2
2
-2.
∴sn=
(n+1)(n+3)
8
+2
n+1
2
-2
n為奇數(shù)
n(n+2)
8
+2
n+2
2
-2
n為偶數(shù)

故答案為:sn=
(n+1)(n+3)
8
+2
n+1
2
-2
n為奇數(shù)
n(n+2)
8
+2
n+2
2
-2
n為偶數(shù)
點(diǎn)評:本題主要考查等差數(shù)列和等比數(shù)列的前n項(xiàng)和公式.考查學(xué)生的運(yùn)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知一個正比例函數(shù)和一個一次函數(shù)的圖象相交于點(diǎn)A(1,4),且一次函數(shù)的圖象與x軸交于點(diǎn)B(3,0)
(1)求這兩個函數(shù)的解析式;
(2)畫出它們的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,圓ρ=2cosθ直徑等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校從參加高一年級期末考試的學(xué)生中抽出20名學(xué)生,將其成績(均為整數(shù))分成六段[40,50),[50,60)…[90,100],然后畫出如下所示頻率分布直方圖,但是缺失了第四組[70,80)的信息.觀察圖形的信息,回答下列問題.
(1)求第四組[70,80)的頻率;
(2)從成績是[50,60)和[60,70)的兩段學(xué)生中任意選兩人,求他們在同一分?jǐn)?shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,其中正視圖是直角三角形,側(cè)視圖是正三角形,俯視圖是邊長為2的正方形,則此幾何體的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷并證明函數(shù)y=2 x2+2x+3的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lgx+x-3在區(qū)間(k-1,k)(k∈Z)上有零點(diǎn),則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左,右焦點(diǎn)分別為F1,F(xiàn)2,其右支上存在一點(diǎn)P,使得PF1與漸近線y=
b
a
x交于第一象限內(nèi)的一點(diǎn)Q,且滿足△F1QF2與△F1PF2的面積之比為
2
3
,則雙曲線C的離心率e的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2
1
2
×log2x2,其中x∈[
1
2
,8].
(1)求f(x)的最大值和最小值;
(2)若實(shí)數(shù)a滿足f(x)-a≥0恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案