某商場為促銷要準(zhǔn)備一些正三棱錐形狀的裝飾品,用半徑為的圓形包裝紙包裝.要求如下:正三棱錐的底面中心與包裝紙的圓心重合,包裝紙不能裁剪,沿底邊向上翻折,其邊緣恰好達(dá)到三棱錐的頂點(diǎn),如圖所示.設(shè)正三棱錐的底面邊長為,體積為.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)在所有能用這種包裝紙包裝的正三棱錐裝飾品中,的最大值是多少?并求此時(shí)的
值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
在△ABC中,角A,B,C的對邊分別是a,b,c,
滿足b2+c2=bc+a2.
(1)求角A的大。
(2)已知等差數(shù)列{an}的公差不為零,若a1cosA=1,且a2,a4,a8成等比數(shù)列,求{}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若數(shù)列滿足①,②存在常數(shù)與無關(guān)),使.則稱數(shù)列是“和諧數(shù)列”.
(1)設(shè)為等比數(shù)列的前項(xiàng)和,且,求證:數(shù)列是“和諧數(shù)列”;
(2)設(shè)是各項(xiàng)為正數(shù),公比為q的等比數(shù)列,是的前項(xiàng)和,求證:數(shù)列是“和諧數(shù)列”的充要條件為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知等比數(shù)列{an}的前n項(xiàng)和為Sn,并且對任意正整數(shù)n均有Sn+2=4Sn+3.則a2= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com