正方體ABCD-A
1B
1C
1D
1中,異面直線AD與BD
1所成角的余弦值為( 。
因為幾何體是正方體,所以AD
∥A
1D
1,所以異面直線AD與BD
1所成角就是∠A
1D
1B,
所以cos∠A
1D
1B=
=
=
.
故選A.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐P-ABCD中,已知PA⊥平面ABCD,PB與平面ABC成60°的角,底面ABCD是直角梯形,∠ABC=∠BAD=90°,AB=BC=
AD.
(1)求證:平面PCD⊥平面PAC;
(2)設(shè)E是棱PD上一點,且PE=
PD,求異面直線AE與PB所成的角.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知長方體ABCD-A
1B
1C
1D
1中,A
1A=AB,E、F分別是BD
1和AD中點.
(1)求異面直線CD
1、EF所成的角;
(2)證明EF是異面直線AD和BD
1的公垂線.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,直三棱柱ABC-A
1B
1C
1,AC⊥BC,且CA=CC
1=2CB,則直線BC
1與直線AB
1所成角的余弦值為( 。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖:四面體A-BCD被一平面所截,截面EFHG是一個矩形,
(1)求證:AB
∥FH;
(2)求異面直線AB、CD所成的角.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,已知正三棱柱ABC-A
1B
1C
1的各條棱長都相等,則異面直線AB
1和A
1C所成的角的余弦值大小是______.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖在長方體ABCD-A
1B
1C
1D
1中,AB=a,AD=b,AC
1=c,點M為AB的中點,點N為BC的中點.
(1)求長方體ABCD-A
1B
1C
1D
1的體積;
(2)若a=4,b=2,
c=,求異面直線A
1M與B
1N所成的角.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知平面α
∥β,A,C∈α,B,D∈β,AB⊥CD,且AB=2,直線AB與平面α所成的角為60°,則線段CD長的取值范圍為( 。
A.[2,+∞) | B.[2 | C.[2,+∞) | D.[2,4] |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,四棱錐S-ABCD中,底面ABCD是邊長為4的正方形,O是AC與BD的交點,SO⊥平面ABCD,E是側(cè)棱SC的中點,異面直線SA和BC所成角的大小是60°.
(Ⅰ)求證:直線SA
∥平面BDE;
(Ⅱ)求直線BD與平面SBC所成角的正弦值.
查看答案和解析>>