已知平面αβ,A,C∈α,B,D∈β,AB⊥CD,且AB=2,直線AB與平面α所成的角為60°,則線段CD長的取值范圍為( 。
A.[2,+∞)B.[2C.[2
3
,+∞)
D.[2
3
,4]
由題意,A在α平面,當A和C重合時,B、D在β平面上,A、B、D構成直角三角形,一內角為60°,此時CD最小為2
3
;
當CD與兩個面近似平行時,達到無限長.
∴線段CD長的取值范圍為[2
3
,+∞)

故選C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,已知AA1與BB1是異面直線,且AA1=2,BB1=1,AB⊥BB1,A1B1⊥BB1,則AA1與BB1所成的角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正方體ABCD-A1B1C1D1中,異面直線AD與BD1所成角的余弦值為( 。
A.
3
3
B.
6
3
C.
2
2
D.
1
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

線段AB的長等于它在平面α上射影的2倍,則AB所在的直線和平面α所成的角為( 。
A.120°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正方體ABCD-A1B1C1D1中直線A1D與平面AB1C1D所成角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M為AB的中點.
(1)求證:BC1平面MA1C;
(2)求直線BC1與平面AA1B1B所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在正方體ABCD-A1B1C1D1中,M,N分別是棱B1C1,AD的中點,則直線MN與底面ABCD所成角的大小是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,正方體ABCD-A1B1C1D1中,BC1與平面BB1D1D所成角為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,已知銳二面角α-l-β,A為α面內一點,A到β的距離為2
3
,到l的距離為4,則二面角α-l-β的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步練習冊答案