11.命題$?{x_0}∈R,{x_0}^2-2{x_0}+4>0$的否定是?x∈R,x2-2x+4≤0

分析 直接利用特稱命題的否定是全稱命題寫出結(jié)果即可.

解答 解:因?yàn)樘胤Q命題的否定是全稱命題,所以命題$?{x_0}∈R,{x_0}^2-2{x_0}+4>0$的否定是:?x∈R,x2-2x+4≤0.
故答案為:?x∈R,x2-2x+4≤0.

點(diǎn)評(píng) 本題考查命題的否定,全稱命題與特稱命題的否定關(guān)系,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點(diǎn)為A(-2,0),離心率為$\frac{\sqrt{2}}{2}$,過(guò)A作斜率為k(k≠0)的直線l交橢圓C于點(diǎn)D,交y軸為E,過(guò)點(diǎn)O作直線l的平行線交橢圓于點(diǎn)G,設(shè)△AOD,△AOE,△DOG的面積分別為S1、S2、S3
(1)求橢圓C的方程;
(2)若S1+S2=3S3,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.定義運(yùn)算:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,將函數(shù)f(x)=$|\begin{array}{l}{\sqrt{3}}&{sinωx}\\{1}&{cosωx}\end{array}|$(ω>0)的圖象向左平移$\frac{2π}{3}$個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)為奇函數(shù),則ω的最小值是( 。
A.$\frac{1}{2}$B.$\frac{5}{4}$C.2D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知正三棱錐D-ABC側(cè)棱兩兩垂直,E為棱AD中點(diǎn),平面α過(guò)點(diǎn)A,且α∥平面EBC,α∩平面ABC=m,α∩平面ACD=n,則m,n所成角的余弦值是$\frac{\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知f(x+1)=x2-2x
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)在x∈[0,5]時(shí).關(guān)于x的方程f(x)=k總有實(shí)數(shù)解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在△ABC中,AB=3,AC=2,∠BAC=60°,點(diǎn)P是△ABC內(nèi)一點(diǎn)(含邊界),若$\overrightarrow{AP}=\frac{2}{3}\overrightarrow{AB}+λ\overrightarrow{AC}$,則|$\overrightarrow{AP}$|的取值范圍為(  )
A.[2,$\frac{2\sqrt{10+3\sqrt{3}}}{3}$]B.[2,$\frac{8}{3}$]C.[0,$\frac{2\sqrt{13}}{3}$]D.[2,$\frac{2\sqrt{13}}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知以O(shè)為中心的雙曲線C的一個(gè)焦點(diǎn)為F,P為C上一點(diǎn),M為PF的中點(diǎn),若△OMF為等腰直角三角形,則C的離心率等于( 。
A.$\sqrt{2}-1$B.$\sqrt{2}+1$C.$2+\sqrt{2}$D.$\frac{\sqrt{5}+1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=ax-e(x+1)lna-$\frac{1}{a}$(a>0,且a≠1),e為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)a=e時(shí),求函數(shù)y=f(x)在區(qū)間x∈[0,2]上的最大值
(2)若函數(shù)f(x)只有一個(gè)零點(diǎn),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)i是虛數(shù)單位,若$\frac{z}{i}$=$\frac{i-3}{1+i}$,則復(fù)數(shù)z的虛部為( 。
A.-2B.2C.-1D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案