1.設(shè)i是虛數(shù)單位,若$\frac{z}{i}$=$\frac{i-3}{1+i}$,則復(fù)數(shù)z的虛部為( 。
A.-2B.2C.-1D.1

分析 把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:由$\frac{z}{i}$=$\frac{i-3}{1+i}$=$\frac{(i-3)(1-i)}{(1+i)(1-i)}=-1+2i$,
得z=(-1+2i)i=-2-i.
∴復(fù)數(shù)z的虛部為-1,
故選:C.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.命題$?{x_0}∈R,{x_0}^2-2{x_0}+4>0$的否定是?x∈R,x2-2x+4≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知正整數(shù)λ,μ為常數(shù),且λ≠1,無窮數(shù)列{an}的各項均為正整數(shù),其前n項和為Sn,且Sn=λan-μ.n∈N*.記數(shù)列{an}中任意不同兩項的和構(gòu)成的集合為A.
(1)求證:數(shù)列{an}為等比數(shù)列,并求λ的值;
(2)若2015∈A,求μ的值;
(3)已知m≥1,求集合{x|3μ•2n-1<x<3μ•2n,x∈A}的元素個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知$sin(\frac{π}{3}-α)=\frac{1}{4}$,則$cos(\frac{π}{3}+2α)$=(  )
A.$\frac{5}{8}$B.$-\frac{7}{8}$C.$-\frac{5}{8}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.過拋物線C:y2=2px(p>0)焦點F的直線l與C相交于A,B兩點,與C的準(zhǔn)線交于點D,若|AB|=|BD|,則直線l的斜率k=( 。
A.$±\frac{1}{3}$B.±3C.$±\frac{{2\sqrt{2}}}{3}$D.$±2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=sin(2x+φ)+2sin2x(|φ|<$\frac{π}{2}$)的圖象過點($\frac{π}{6}$,$\frac{3}{2}$).
(1)求函數(shù)f(x)在[0,$\frac{π}{2}$]的最小值;
(2)設(shè)角C為銳角,△ABC的內(nèi)角A、B、C的對邊長分別為a、b、c,若x=C是曲線y=f(x)的一條對稱軸,且△ABC的面積為2$\sqrt{3}$,a+b=6,求邊c的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知直線l:x+y-4=0與坐標(biāo)軸交于A、B兩點,O為坐標(biāo)原點,則經(jīng)過O、A、B三點的圓的標(biāo)準(zhǔn)方程為(x-2)2+(y-2)2=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知橢圓C1與雙曲線C2有相同的左右焦點F1、F2,P為橢圓C1與雙曲線C2在第一象限內(nèi)的一個公共點,設(shè)橢圓C1與雙曲線C2的離心率為e1,e2,且$\frac{{e}_{1}}{{e}_{2}}$=$\frac{1}{3}$,若∠F1PF2=$\frac{π}{3}$,則雙曲線C2的漸近線方程為( 。
A.x±y=0B.x±$\frac{\sqrt{3}}{3}$y=0C.x±$\frac{\sqrt{2}}{2}$y=0D.x±2y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,D、E分別是AB、AC的中點,M是直線DE上的動點.若△ABC的面積為2,則$\overrightarrow{MB}$•$\overrightarrow{MC}$+$\overrightarrow{BC}$2的最小值為2$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案