定義,,.
(1)比較與的大;
(2)若,證明:;
(3)設(shè)的圖象為曲線,曲線在處的切線斜率為,若,且存在實(shí)數(shù),使得,求實(shí)數(shù)的取值范圍.
(1);(2)詳見解析;(3)實(shí)數(shù)的取值范圍為.
解析試題分析:(1)根據(jù)定義求出和,進(jìn)而比較出和的大;(2)先利用定義求出和的表達(dá)式,,利用分析法將所要證明的不等式等價(jià)轉(zhuǎn)化為,構(gòu)造新函數(shù),問題等價(jià)轉(zhuǎn)化利用導(dǎo)數(shù)證明函數(shù)在區(qū)間上單調(diào)遞減;(3)先利用定義求出函數(shù)的解析式,并求出相應(yīng)的導(dǎo)數(shù),從而得到的表達(dá)式,結(jié)合對(duì)數(shù)運(yùn)算將問題等價(jià)轉(zhuǎn)化為不等式在有解,結(jié)合導(dǎo)數(shù)對(duì)函數(shù)的極值點(diǎn)是否在區(qū)間進(jìn)行分類討論,確定函數(shù)在區(qū)間的最值,利用最值進(jìn)行分析,從而求出參數(shù)的取值范圍.
試題解析:(1)由定義知
∴,∴.
(2)
要證,只要證
∵
令,則,
當(dāng)時(shí),,∴在上單調(diào)遞減.
∵ ∴,即
∴不等式成立.
(3)由題意知:,且
于是有 在上有解.
又由定義知 即
∵ ∴,∴,即
∴在有解.
設(shè)
①當(dāng)即時(shí),≥. 當(dāng)且僅當(dāng)時(shí),
∴ 當(dāng)時(shí), ∴
②當(dāng)≤時(shí),即≤時(shí),在上遞減,
∴. ∴
整理得:,無解
綜上所述,實(shí)數(shù)的取值范圍為.
考點(diǎn):1.新定義;2.利用分析法證明不等式;3.參數(shù)分離法;4.基本不等式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場(chǎng)經(jīng)營(yíng)一批進(jìn)價(jià)是30元/件的商品,在市場(chǎng)試銷中發(fā)現(xiàn),此商品銷售價(jià)元與日銷售量件之間有如下關(guān)系:
x | 45 | 50 |
y | 27 | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),h(x)=2alnx,.
(1)當(dāng)a∈R時(shí),討論函數(shù)的單調(diào)性;
(2)是否存在實(shí)數(shù)a,對(duì)任意的,且,都有
恒成立,若存在,求出a的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在一條筆直的工藝流水線上有個(gè)工作臺(tái),將工藝流水線用如圖所示的數(shù)軸表示,各工作臺(tái)的坐標(biāo)分別為,,,,每個(gè)工作臺(tái)上有若干名工人.現(xiàn)要在流水線上建一個(gè)零件供應(yīng)站,使得各工作臺(tái)上的所有工人到供應(yīng)站的距離之和最短.
(Ⅰ)若,每個(gè)工作臺(tái)上只有一名工人,試確定供應(yīng)站的位置;
(Ⅱ)若,工作臺(tái)從左到右的人數(shù)依次為,,,,,試確定供應(yīng)站的位置,并求所有工人到供應(yīng)站的距離之和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了降低能源損耗,某體育館的外墻需要建造隔熱層.體育館要建造可使用年的隔熱層,每厘米厚的隔熱層建造成本為萬元.該建筑物每年的能源消耗費(fèi)用(單位:萬元)與隔熱層厚度(單位:)滿足關(guān)系:(,為常數(shù)),若不建隔熱層,每年能源消耗費(fèi)用為萬元.設(shè)為隔熱層建造費(fèi)用與年的能源消耗費(fèi)用之和.
(1)求的值及的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用達(dá)到最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一種放射性元素,最初的質(zhì)量為,按每年衰減.
(1)求年后,這種放射性元素的質(zhì)量與的函數(shù)關(guān)系式;
(2)求這種放射性元素的半衰期(質(zhì)量變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic5/tikupic/99/3/t3b2c1.png" style="vertical-align:middle;" />時(shí)所經(jīng)歷的時(shí)間).()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,是一個(gè)矩形花壇,其中AB=4米,AD=3米.現(xiàn)將矩形花壇擴(kuò)建成一個(gè)更大的矩形花園,要求:B在上,D在上,對(duì)角線過C點(diǎn),且矩形的面積小于64平方米.
(Ⅰ)設(shè)長(zhǎng)為米,矩形的面積為平方米,試用解析式將表示成的函數(shù),并寫出該函數(shù)的定義域;
(Ⅱ)當(dāng)的長(zhǎng)度是多少時(shí),矩形的面積最小?并求最小面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)令,求關(guān)于的函數(shù)關(guān)系式及的取值范圍;
(Ⅱ)求函數(shù)的值域,并求函數(shù)取得最小值時(shí)的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)當(dāng),且時(shí),求證:
(2)是否存在實(shí)數(shù),使得函數(shù)的定義域、值域都是?若存在,則求出的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com