如圖所示,是一個矩形花壇,其中AB=4米,AD=3米.現(xiàn)將矩形花壇擴建成一個更大的矩形花園,要求:B在上,D在上,對角線過C點,且矩形的面積小于64平方米.

(Ⅰ)設(shè)長為米,矩形的面積為平方米,試用解析式將表示成的函數(shù),并寫出該函數(shù)的定義域;
(Ⅱ)當的長度是多少時,矩形的面積最小?并求最小面積.

(1)88 (2)307050元

解析試題分析:(1)要想求出矩形的面積需要求出AM長,由△NDC∽△NAM可以求出AM的長(2)由第一問可以知道s關(guān)于x的函數(shù),令就可以將s轉(zhuǎn)化為基本不等式求解.
試題解析:(Ⅰ)由△NDC∽△NAM,可得,
,即,故,
,解得,
故所求函數(shù)的解析式為,定義域為.        6分
(Ⅱ)令,則由,可得,

當且僅當,即時,即當時,取最小值48.
故當的長為時,矩形的面積最小,最小面積為平方米.    12分
考點:基本不等式

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

上海某化學(xué)試劑廠以x千克/小時的速度生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),為了保證產(chǎn)品的質(zhì)量,需要一邊生產(chǎn)一邊運輸,這樣按照目前的市場價格,每小時可獲得利潤是元.
(1)要使生產(chǎn)運輸該產(chǎn)品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)運輸900千克該產(chǎn)品獲得的利潤最大,問:該工廠應(yīng)該選取何種生產(chǎn)速度?并求最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為常數(shù)).
(Ⅰ)求函數(shù)的定義域;
(Ⅱ)若,,求函數(shù)的值域;
(Ⅲ)若函數(shù)的圖像恒在直線的上方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義,,.
(1)比較的大;
(2)若,證明:;
(3)設(shè)的圖象為曲線,曲線處的切線斜率為,若,且存在實數(shù),使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某林場現(xiàn)有木材30000,如果每年平均增長5﹪,經(jīng)過年,樹林中有木材,
(1)寫出木材儲量)與之間的函數(shù)關(guān)系式。
(2)經(jīng)過多少年儲量不少于60000?(結(jié)果保留一個有效數(shù)字)
(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當年產(chǎn)量不足80千件時,(萬元).當年產(chǎn)量不小于80千件時,(萬元).每件商品售價為500元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

湖北省第十四屆運動會紀念章委托某專營店銷售,每枚進價5元,同時每銷售一枚這種紀念章需向荊州籌委會交特許經(jīng)營管理費2元,預(yù)計這種紀念章以每枚20元的價格銷售時該店一年可銷售2000枚,經(jīng)過市場調(diào)研發(fā)現(xiàn)每枚紀念章的銷售價格在每枚20元的基礎(chǔ)上每減少一元則增加銷售400枚,而每增加一元則減少銷售100枚,現(xiàn)設(shè)每枚紀念章的銷售價格為元,為整數(shù).
(1)寫出該專營店一年內(nèi)銷售這種紀念章所獲利潤(元)與每枚紀念章的銷售價格(元)的函數(shù)關(guān)系式(并寫出這個函數(shù)的定義域);
(2)當每枚紀念章銷售價格為多少元時,該特許專營店一年內(nèi)利潤(元)最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若非零函數(shù)對任意實數(shù)均有,且當
(1)求證:
(2)求證:為R上的減函數(shù);
(3)當時, 對時恒有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

用一塊鋼錠燒鑄一個厚度均勻,且表面積為2m2的正四棱錐形有蓋容器(如下圖)。設(shè)容器高為m,蓋子邊長為m,

(1)求關(guān)于的解析式;
(2)設(shè)容器的容積為V m3,則當h為何值時,V最大? 并求出V的最大值(求解本題時,不計容器厚度).

查看答案和解析>>

同步練習(xí)冊答案