【題目】某高校對(duì)生源基地學(xué)校一年級(jí)的數(shù)學(xué)成績(jī)進(jìn)行摸底調(diào)查,已知其中兩個(gè)摸底學(xué)校分別有人、人,現(xiàn)采用分層抽樣的方法從兩個(gè)學(xué)校一共抽取了名學(xué)生的數(shù)學(xué)成績(jī),并作出了頻數(shù)分別統(tǒng)計(jì)表如下:(一年級(jí)人數(shù)為人的學(xué)校記為學(xué)校一,一年級(jí)人數(shù)為1000人的學(xué)校記為學(xué)校二)

學(xué)校一

分組

頻道

分組

頻數(shù)

學(xué)校二

分組

頻道

分組

頻數(shù)

1)計(jì)算的值.

2)若規(guī)定考試成績(jī)?cè)?/span>內(nèi)為優(yōu)秀,請(qǐng)分別估計(jì)兩個(gè)學(xué)校數(shù)學(xué)成績(jī)的優(yōu)秀率;

3)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有的把握認(rèn)為兩個(gè)學(xué)校的數(shù)學(xué)成績(jī)有差異.

學(xué)校一

學(xué)校二

總計(jì)

優(yōu)秀

非優(yōu)秀

總計(jì)

附:

【答案】12)甲校優(yōu)秀率為,乙校優(yōu)秀率為3)填表見解析,有的把握認(rèn)為兩個(gè)學(xué)校的數(shù)學(xué)成績(jī)有差異

【解析】

1)利用分層抽樣方法求得甲、乙兩校各抽取的人數(shù), 從而求出、的值;

2)利用表中數(shù)據(jù)計(jì)算甲、乙兩校的優(yōu)秀率各是多少;

3)由題意填寫列聯(lián)表,計(jì)算觀測(cè)值,對(duì)照臨界值得出結(jié)論.

1)利用分層抽樣方法知,甲校抽取人,

乙校抽取人,

;

2)若規(guī)定考試成績(jī)?cè)?/span>內(nèi)為優(yōu)秀,

則估計(jì)甲校優(yōu)秀率為

乙校優(yōu)秀率為;

3)根據(jù)所給的條件列出列聯(lián)表,

甲校

乙校

總計(jì)

優(yōu)秀

非優(yōu)秀

總計(jì)

計(jì)算,

又因?yàn)?/span>,

所以有的把握認(rèn)為兩個(gè)學(xué)校的數(shù)學(xué)成績(jī)有差異.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若直線與曲線分別交于兩點(diǎn)直線,且曲線處的切線與處的切線相互平行,求正數(shù)的最大值;

(2)若有三個(gè)不同的零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線 ,曲線 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系.

(Ⅰ)求曲線, 的極坐標(biāo)方程;

(Ⅱ)曲線 為參數(shù), )分別交, , 兩點(diǎn),當(dāng)取何值時(shí), 取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓為圓上任意一點(diǎn),過作圓的切線,分別交直線兩點(diǎn),連接,相交于點(diǎn),若點(diǎn)的軌跡為曲線.

(1)設(shè)直線的斜率分別為,求的值,并求曲線的方程;

(2)記直線與曲線有兩個(gè)不同的交點(diǎn),與直線交于點(diǎn),與直線交于點(diǎn),求的面積與的面積的比值的最大值及取得最大值時(shí)的值.

(注:在點(diǎn)處的切線方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:

日 期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

晝夜溫差x(°C)

10

11

13

12

8

6

就診人數(shù)y(個(gè))

22

25

29

26

16

12

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;

(2)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程

(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計(jì)一次性飲酒4.8兩誘發(fā)腦血管病的概率為0.04,一次性飲酒7.2兩誘發(fā)腦血管病的概率為0.16.已知某公司職員一次性飲酒4.8兩未誘發(fā)腦血管病,則他還能繼續(xù)飲酒2.4兩不誘發(fā)腦血管病的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從全校參加數(shù)學(xué)競(jìng)賽的學(xué)生的試卷中抽取一個(gè)樣本,考察競(jìng)賽的成績(jī)分布情況,將樣本分成5組,繪成頻率分布直方圖,圖中從左到右各小長(zhǎng)方形的高之比為,最右邊一組頻數(shù)是6,請(qǐng)結(jié)合直方圖提供的信息,解答下列問題:

1)樣本量是多少?

2)列出頻率分布表.

3)估計(jì)這次競(jìng)賽中,成績(jī)高于60分的學(xué)生占總?cè)藬?shù)的百分比.

4)成績(jī)落在哪個(gè)范圍內(nèi)的人數(shù)最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】物聯(lián)網(wǎng)(Internet of Things,縮寫:IOT)是基于互聯(lián)網(wǎng)、傳統(tǒng)電信網(wǎng)等信息承載體,讓所有能行使獨(dú)立功能的普通物體實(shí)現(xiàn)互聯(lián)互通的網(wǎng)絡(luò). 其應(yīng)用領(lǐng)域主要包括運(yùn)輸和物流、工業(yè)制造、健康醫(yī)療、智能環(huán)境(家庭、辦公、工廠)等,具有十分廣闊的市場(chǎng)前景. 現(xiàn)有一家物流公司計(jì)劃租地建造倉庫儲(chǔ)存貨物,經(jīng)過市場(chǎng)調(diào)查了解到下列信息:倉庫每月土地占地費(fèi)(單位:萬元),倉庫到車站的距離(單位:千米,),其中成反比,每月庫存貨物費(fèi)(單位:萬元)與成正比;若在距離車站9千米處建倉庫,則分別為2萬元和7. 2萬元. 這家公司應(yīng)該把倉庫建在距離車站多少千米處,才能使兩項(xiàng)費(fèi)用之和最?最小費(fèi)用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)都是定義在集合上的函數(shù),對(duì)于任意的,都有成立,稱函數(shù)上互為互換函數(shù)

1)函數(shù)上互為互換函數(shù),求集合

2)若函數(shù) )與在集合上互為互換函數(shù),求證:

3)函數(shù)在集合上互為互換函數(shù),當(dāng)時(shí),,且上是偶函數(shù),求函數(shù)在集合上的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案