【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線: ,曲線: (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系.
(Ⅰ)求曲線, 的極坐標(biāo)方程;
(Ⅱ)曲線: (為參數(shù), , )分別交, 于, 兩點(diǎn),當(dāng)取何值時(shí), 取得最大值.
【答案】(Ⅰ):, : ;(Ⅱ).
【解析】試題分析:(1)利用, ,將直線直角坐標(biāo)方程化為極坐標(biāo)方程,先根據(jù) 將曲線參數(shù)方程化為直角坐標(biāo)方程,,再利用將曲線直角坐標(biāo)方程化為極坐標(biāo)方程.(2)先確定曲線的極坐標(biāo)方程為(, ),再代入曲線, 的極坐標(biāo)方程得,從而理二倍角公式及配角公式化簡得,最后根據(jù)正弦函數(shù)性質(zhì)求最值.
試題解析:(Ⅰ)因?yàn)?/span>, , ,
的極坐標(biāo)方程為,
的普通方程為,即,對應(yīng)極坐標(biāo)方程為.
(Ⅱ)曲線的極坐標(biāo)方程為(, )
設(shè), ,則, ,
所以
,
又, ,
所以當(dāng),即時(shí), 取得最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩種商品,經(jīng)營銷售這兩種商品所能獲得的利潤依次是P(萬元)和Q(萬元),它們與投入資金x(萬元)的關(guān)系有經(jīng)驗(yàn)公式:P=,Q= .今有3萬元資金投入經(jīng)營甲、乙兩種商品,為獲得最大利潤,對甲、乙兩種商品的資金投入分別應(yīng)為多少?能獲得的最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一座圓拱橋,當(dāng)水面在如圖所示位置時(shí),拱頂離水面2米,水面寬12米,當(dāng)水面下降1米后,水面寬多少米?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量按照空氣質(zhì)量指數(shù)大小分為七檔(五級(jí)),相對應(yīng)空氣質(zhì)量的七個(gè)類別,指數(shù)越大,說明污染的情況越嚴(yán)重,對人體危害越大.
指數(shù) | 級(jí)別 | 類別 | 戶外活動(dòng)建議 |
Ⅰ | 優(yōu) | 可正常活動(dòng) | |
Ⅱ | 良 | ||
Ⅲ | 輕微污染 | 易感人群癥狀有輕度加劇,健康人群出現(xiàn)刺激癥狀,心臟病和呼吸系統(tǒng)疾病患者應(yīng)減少體積消耗和戶外活動(dòng). | |
輕度污染 | |||
Ⅳ | 中度污染 | 心臟病和肺病患者癥狀顯著加劇,運(yùn)動(dòng)耐受力降低,健康人群中普遍出現(xiàn)癥狀,老年人和心臟病、肺病患者應(yīng)減少體力活動(dòng). | |
中度重污染 | |||
Ⅴ | 重污染 | 健康人運(yùn)動(dòng)耐受力降低,由明顯強(qiáng)烈癥狀,提前出現(xiàn)某些疾病,老年人和病人應(yīng)當(dāng)留在室內(nèi),避免體力消耗,一般人群應(yīng)盡量減少戶外活動(dòng). |
現(xiàn)統(tǒng)計(jì)邵陽市市區(qū)2016年1月至11月連續(xù)60天的空氣質(zhì)量指數(shù),制成如圖所示的頻率分布直方圖.
(1)求這60天中屬輕度污染的天數(shù);
(2)求這60天空氣質(zhì)量指數(shù)的平均值;
(3)一般地,當(dāng)空氣質(zhì)量為輕度污染或輕度污染以上時(shí)才會(huì)出現(xiàn)霧霾天氣,且此時(shí)出現(xiàn)霧霾天氣的概率為,請根據(jù)統(tǒng)計(jì)數(shù)據(jù),求在未來2天里,邵陽市恰有1天出現(xiàn)霧霾天氣的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),.
(1)求函數(shù)單調(diào)區(qū)間;
(2)當(dāng)時(shí),
①求函數(shù)在上的值域;
②求證:,其中,.(參考數(shù)據(jù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以點(diǎn)C為圓心的圓經(jīng)過點(diǎn)A(-1,0)和B(3,4),且圓心在直線x+3y-15=0上.設(shè)點(diǎn)P在圓C上,求△PAB的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x|(x﹣a),a為實(shí)數(shù).
(1)若函數(shù)f(x)為奇函數(shù),求實(shí)數(shù)a的值;
(2)若函數(shù)f(x)在[0,2]為增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)a(a<0),使得f(x)在閉區(qū)間上的最大值為2,若存在,求出a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差(°C) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={x|x=m+,m∈Z},N={x|x=-,n∈Z},P={x|x=+,p∈Z},試確定M,N,P之間的關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com