已知,其中是自然常數(shù),
(Ⅰ)當(dāng)時, 研究的單調(diào)性與極值;
(Ⅱ)在(Ⅰ)的條件下,求證:;
(Ⅰ)的極小值為;(Ⅱ)。
解析試題分析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d6/e/ienmn.png" style="vertical-align:middle;" />,,那么求解導(dǎo)數(shù)的正負(fù),得到單調(diào)性的求解。
(2) 的極小值為1,即在上的最小值為1,
∴ ,,構(gòu)造函數(shù)令,確定出最大值。比較大小得到。
解:(Ⅰ), ……2分
∴當(dāng)時,,此時單調(diào)遞減
當(dāng)時,,此時單調(diào)遞增 …………4分
∴的極小值為 ……6分
(Ⅱ)的極小值為1,即在上的最小值為1,
∴ ,……5分
令,, …………8分w.w.w.k.s.5.u.c.o.m
當(dāng)時,,在上單調(diào)遞增 ………9分
∴ ………11分
∴在(1)的條件下,……………………………12分
考點(diǎn):本題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
點(diǎn)評:解決該試題的關(guān)鍵是利用導(dǎo)數(shù)的正負(fù)判定函數(shù)單調(diào)性,和導(dǎo)數(shù)為零點(diǎn)的左右符號的正負(fù),進(jìn)而得到函數(shù)極值,進(jìn)而求解最值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分)已知函數(shù).
(1)求函數(shù)的圖像在點(diǎn)處的切線方程;
(2)若,且對任意恒成立,求的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
(1)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;
(2)在(1)的條件下,求函數(shù)的圖像過點(diǎn)的切線方程;
(3)對一切的,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)
(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時,若在區(qū)間上的最小值為-2,求的取值范圍;
(3)若對任意,且恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),曲線過點(diǎn),且在點(diǎn)處的切線斜率為2.
(Ⅰ)求的值;
(Ⅱ)求的極值點(diǎn);
(Ⅲ)對定義域內(nèi)任意一個,不等式是否恒成立,若成立,請證明;若不成立,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知函數(shù)
(Ⅰ)若,試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,且對于任意,恒成立,試確定實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù).
(Ⅰ)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個數(shù);
(Ⅱ)若函數(shù)在處取得極值,對恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分) 已知函數(shù),函數(shù)
(I)當(dāng)時,求函數(shù)的表達(dá)式;
(II)若,且函數(shù)在上的最小值是2 ,求的值;
(III)對于(II)中所求的a值,若函數(shù),恰有三個零點(diǎn),求b的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com