已知
(1)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;
(2)在(1)的條件下,求函數(shù)的圖像過點的切線方程;
(3)對一切的,恒成立,求實數(shù)的取值范圍.

(1)  (2) (3)

解析試題分析:(1)
由題意的解集是,即的兩根分別是,將代入方程,
∴  .                                          ……4分
(2)設(shè)切點坐標(biāo)是.有,
代入上式整理得,解得.
函數(shù)的圖像過點的切線方程
.                                           ……10分
(3)由題意:上恒成立,
可得,
設(shè),則,
,得 (舍),當(dāng)時,;當(dāng)時,
∴當(dāng)時,取得最大值, =-2,  .
,即的取值范圍是.                               ……16分
考點:本小題主要考查利用導(dǎo)數(shù)判斷單調(diào)性、導(dǎo)數(shù)幾何意義的應(yīng)用和構(gòu)造新函數(shù)利用導(dǎo)數(shù)解決恒成立問題,考查學(xué)生分析問題、解決問題的能力和運算求解能力.
點評:利用導(dǎo)數(shù)的幾何意義求切線方程時,要分清是某點處的切線還是過某點的切線,還要分清已知點在不在曲線上;恒成立問題一般轉(zhuǎn)化為求最值問題解決,如果需要,可以構(gòu)造新函數(shù)用導(dǎo)數(shù)解決.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題14分)已知函數(shù)處取得極值,且在處的切線的斜率為1。
(Ⅰ)求的值及的單調(diào)減區(qū)間;
(Ⅱ)設(shè)>0,>0,,求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分12分)已知函數(shù).(Ⅰ) 求上的最小值;(Ⅱ) 若存在是常數(shù),=2.71828)使不等式成立,求實數(shù)的取值范圍;
(Ⅲ) 證明對一切都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中常數(shù) .
(1)當(dāng)時,求函數(shù)的極大值;
(2)試討論在區(qū)間上的單調(diào)性;
(3)當(dāng)時,曲線上總存在相異兩點,
,使得曲線在點處的切線互相平行,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知,其中是自然對數(shù)的底數(shù),
(1)討論時,的單調(diào)性。
(2)求證:在(1)條件下,
(3)是否存在實數(shù),使得最小值是3,如果存在,求出的值;如果不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)f(x)=x3-ax2-3x.
(1)若f(x)在x∈[1,+∞)上是增函數(shù),求實數(shù)a的取值范圍;
(2)若x=3是f(x)的極值點,求f(x)在x∈[1,a]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,其中是自然常數(shù),
(Ⅰ)當(dāng)時, 研究的單調(diào)性與極值;
(Ⅱ)在(Ⅰ)的條件下,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)求函數(shù)f(x)=- 2的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù),且對于任意實數(shù),恒有
(1)求函數(shù)的解析式;
(2)函數(shù)有幾個零點?

查看答案和解析>>

同步練習(xí)冊答案