已知f(x)是以2為周期的偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x,若在區(qū)間[-1,3]內(nèi),函數(shù)g(x)=f(x)-kx-k有4個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若函數(shù)y=的定義域?yàn)镽,則實(shí)數(shù)m的取值范圍是( )
A.(0,] B.(0,)
C.[0,] D.[0,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
函數(shù)f(x)=mx2-2x+1有且僅有一個(gè)正實(shí)數(shù)的零點(diǎn),則實(shí)數(shù)m的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
某商人將進(jìn)貨單價(jià)為8元的某種商品按10元一個(gè)銷售時(shí),每天可賣出100個(gè),現(xiàn)在他采用提高售價(jià),減少進(jìn)貨量的辦法增加利潤(rùn),已知這種商品銷售單價(jià)每漲1元,銷售量就減少10個(gè),問他將售價(jià)每個(gè)定為多少元時(shí),才能使每天所賺的利潤(rùn)最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若冪函數(shù)y=f(x)的圖象過(guò)點(diǎn)(2,),則函數(shù)f(x)的解析式為f(x)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)a∈R,函數(shù)f(x)=x·|x-a|+2x.
(1) 若a=2,求函數(shù)f(x)在區(qū)間[0,3]上的最大值;
(2) 若a>2,寫出函數(shù)f(x)的單調(diào)區(qū)間(不必證明);
(3) 若存在a∈[-2,4],使得關(guān)于x的方程f(x)=t·f(a)有3個(gè)不相等的實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知cosθ=,角α的終邊經(jīng)過(guò)點(diǎn)P(sin2θ,sin4θ),則的值為( )
A.-1 B.1
C.7 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知m=(asinx,cosx),n=(sinx,bsinx),其中a,b,x∈R.若f(x)=m·n滿足f()=2,且f(x)的導(dǎo)函數(shù)f ′(x)的圖象關(guān)于直線x=對(duì)稱.
(1)求a,b的值;
(2)若關(guān)于x的方程f(x)+log2k=0在區(qū)間[0,]上總有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com