【題目】已知
(1)求;
(2)我們知道二項(xiàng)式的展開(kāi)式,若等式兩邊對(duì)求導(dǎo)得,令得.利用此方法解答下列問(wèn)題:
①求;
②求.
【答案】(1)1;(2)①2n;②4n2-2n.
【解析】
(1)采用賦值法,令,求系數(shù)的和;(2)①原式兩邊求導(dǎo),得,再賦值求值;②兩邊同時(shí)乘以,然后兩邊再求導(dǎo),賦值求值.
(1) 對(duì)于(2x-1)n=a0+a1x+a2x2+…+anxn,
取x=1得a0+a1+a2+…+an=1.
(2) ①對(duì)(2x-1)n=a0+a1x+a2x2+…+anxn兩邊求導(dǎo)得2n(2x-1)n-1=a1+2a2x+3a3x2+…+nanxn-1,
取x=1得a1+2a2+3a3+…+nan=2n.
②將2n(2x-1)n-1=a1+2a2x+3a3x2+…+nanxn-1兩邊乘以x得
2n(2x-1)n-1·x=a1x+2a2x2+3a3x3+…+nanxn,
兩邊求導(dǎo)得
2n[2(n-1)(2x-1)n-2x+(2x-1)n-1]=a1+22a2x+32a3x2+…+n2anxn-1,
取x=1得12a1+22a2+32a3+…+n2an=4n2-2n.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,滿(mǎn)足,,,且.若存在,使得成立,則實(shí)數(shù)的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的部分圖象如圖所示,則下列敘述正確的是( )
A.函數(shù)的圖象可由的圖象向左平移個(gè)單位得到
B.函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng)
C.函數(shù)在區(qū)間上是單調(diào)遞增的
D.函數(shù)圖象的對(duì)稱(chēng)中心為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).(是自然對(duì)數(shù)的底數(shù))
(1)求的單調(diào)遞減區(qū)間;
(2)若函數(shù),證明在上只有兩個(gè)零點(diǎn).(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】年,“非典”爆發(fā),以鐘南山為代表的醫(yī)護(hù)工作者經(jīng)長(zhǎng)期努力,抗擊了非典.年歲高齡的鐘院士再次披掛上陣,逆行武漢抗擊新冠疫情。為調(diào)查中學(xué)生對(duì)這一偉大“逆行者”的了解程度,某調(diào)查小組隨機(jī)抽取了某市物化生、政史地的名高中生,請(qǐng)他們列舉鐘南山院士在醫(yī)學(xué)上的成就,把能列舉鐘南山成就不少于項(xiàng)的稱(chēng)為“比較了解”,少于三項(xiàng)的稱(chēng)為“不太了解”他們的調(diào)查結(jié)果如下:
組合 | 0項(xiàng) | 1項(xiàng) | 2項(xiàng) | 3項(xiàng) | 4項(xiàng) | 5項(xiàng) | 5項(xiàng)以上 |
物化生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
政史地(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)請(qǐng)將下面的2×2列聯(lián)表補(bǔ)充完整;
組合 | 比較了解 | 不太了解 | 合計(jì) |
物化生 | |||
政史地 | |||
合計(jì) |
(2)判斷是否有99%的把握認(rèn)為,了解鐘南山與選擇物化生、政史地組合有關(guān)?
參考:.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,.
若,解不等式;
若不等式對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍;
若,解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果函數(shù)y=f(x)的導(dǎo)函數(shù)的圖象如圖所示,給出下列判斷:
①函數(shù)y=f(x)在區(qū)間內(nèi)單調(diào)遞增;
②函數(shù)y=f(x)在區(qū)間內(nèi)單調(diào)遞減;
③函數(shù)y=f(x)在區(qū)間(4,5)內(nèi)單調(diào)遞增;
④當(dāng)x=2時(shí),函數(shù)y=f(x)有極小值;
⑤當(dāng)x=時(shí),函數(shù)y=f(x)有極大值.
則上述判斷中正確的是( )
A. ①② B. ②③
C. ③④⑤ D. ③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高一年級(jí)三個(gè)班共有學(xué)生120名,這三個(gè)班的男女生人數(shù)如下表所示,已知在全年級(jí)中隨機(jī)抽取1名學(xué)生,抽到二班女生的概率是0.2,則_________.現(xiàn)用分層抽樣的方法在全年級(jí)抽取30名學(xué)生,則應(yīng)在三班抽取的學(xué)生人數(shù)為________.
一班 | 二班 | 三班 | |
女生人數(shù) | 20 | ||
男生人數(shù) | 20 | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓:的離心率為,橢圓上一點(diǎn)到左右兩個(gè)焦點(diǎn)、的距離之和是4.
(1)求橢圓的方程;
(2)已知過(guò)的直線(xiàn)與橢圓交于、兩點(diǎn),且兩點(diǎn)與左右頂點(diǎn)不重合,若,求四邊形面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com