【題目】設(shè)橢圓:的離心率為,橢圓上一點(diǎn)到左右兩個(gè)焦點(diǎn)、的距離之和是4.
(1)求橢圓的方程;
(2)已知過(guò)的直線與橢圓交于、兩點(diǎn),且兩點(diǎn)與左右頂點(diǎn)不重合,若,求四邊形面積的最大值.
【答案】(1);(2)6.
【解析】
(1)首先可根據(jù)題意得出,然后根據(jù)得出,最后通過(guò)計(jì)算出的值并寫出橢圓方程;
(2)首先可以設(shè)、,然后根據(jù)直線過(guò)點(diǎn)設(shè)出直線方程,再然后聯(lián)立直線方程與橢圓方程,根據(jù)韋達(dá)定理得出以及,再然后結(jié)合題意得出四邊形是平行四邊形以及其面積,最后通過(guò)計(jì)算即可得出結(jié)果.
(1)因?yàn)闄E圓上一點(diǎn)到左右兩個(gè)焦點(diǎn)、的距離之和是4,
所以,,
因?yàn)?/span>,所以,
所以橢圓C方程為.
(2)設(shè),,
因?yàn)橹本過(guò)點(diǎn),所以可設(shè)直線方程為,
聯(lián)立方程,消去可得:,
化簡(jiǎn)整理得,
其中,
,,
因?yàn)?/span>,所以四邊形是平行四邊形,
設(shè)平面四邊形的面積為,
則,
設(shè),則,
所以,
因?yàn)?/span>,所以,,
所以四邊形面積的最大值為6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
(1)求;
(2)我們知道二項(xiàng)式的展開(kāi)式,若等式兩邊對(duì)求導(dǎo)得,令得.利用此方法解答下列問(wèn)題:
①求;
②求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為橢圓的左右焦點(diǎn),點(diǎn)在橢圓上,且.
(1)求橢圓的方程;
(2)過(guò)的直線分別交橢圓于和,且,問(wèn)是否存在常數(shù),使得等差數(shù)列?若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】要得到函數(shù)的圖象,只要將函數(shù)的圖象( )
A.每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(縱坐標(biāo)不變),再將所得圖象向左平移個(gè)長(zhǎng)度
B.每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(縱坐標(biāo)不變),再將所得圖象向左平移個(gè)長(zhǎng)度
C.向左平移個(gè)長(zhǎng)度,再將所得圖象每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(縱坐標(biāo)不變)
D.向左平移個(gè)長(zhǎng)度,再將所得圖象每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(縱坐標(biāo)不變)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,側(cè)面⊥底面,底面為直角梯形,//,,,,為的中點(diǎn).
(Ⅰ)求證:PA//平面BEF;
(Ⅱ)若PC與AB所成角為,求的長(zhǎng);
(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(,且)是定義域?yàn)?/span>R的奇函數(shù).
(1)求t的值;
(2)若,求使不等式對(duì)一切恒成立的實(shí)數(shù)k的取值范圍;
(3)若函數(shù)的圖象過(guò)點(diǎn),是否存在正數(shù)m(),使函數(shù)在上的最大值為0,若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.
(1)求該拋物線的方程;
(2)已知拋物線上一點(diǎn),過(guò)點(diǎn)作拋物線的兩條弦和,且,判斷直線是否過(guò)定點(diǎn)?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中, , , 平面,在平行四邊形中, , , .
(1)求證: 平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)幾何體的三視圖如圖所示,若該幾何體的外接球表面積為,則該幾何體的體積為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com