【題目】已知數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,滿足,,且.若存在使得成立,則實(shí)數(shù)的最小值為__________

【答案】

【解析】

先根據(jù)數(shù)列的遞推公式可求出,再利用累乘法求出通項(xiàng)公式,再構(gòu)造數(shù)列BnT2nTn,判斷數(shù)列的單調(diào)性,即可求出

∵3Sn=(n+man,

∴3S1=3a1=(1+ma1,解得m=2,

∴3Sn=(n+2)an,,

當(dāng)n≥2時(shí),3Sn1=(n+1)an1,,

可得3an=(n+2)an﹣(n+1)an1,

即(n﹣1)an=(n+1)an1,

,

,,…,,,

累乘可得annn+1),

經(jīng)檢驗(yàn)a1=2符合題意,

annn+1),nN*,

anbnn,

bn,

BnT2nTn,

Bn+1Bn0,

∴數(shù)列{Bn}為遞增數(shù)列,

BnB1

∵存在nN*,使得λ+TnT2n成立,

λB1,

故實(shí)數(shù)λ的最小值為

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若在區(qū)間上單調(diào)遞增,求m的取值范圍;

2)求在區(qū)間上的最小值;

3)討論在區(qū)間上的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(),曲線在點(diǎn)處的切線方程為.

(1)求實(shí)數(shù)的值,并求的單調(diào)區(qū)間;

(2)試比較的大小,并說明理由;

(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第個(gè)家庭的月收入(單位:千元)與月儲(chǔ)蓄(單位:千元)的數(shù)據(jù)資料,算得,

1)求家庭的月儲(chǔ)蓄對(duì)月收入的線性回歸方程;

2)若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.

(附:線性回歸方程中,,其中為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,亦稱“趙爽炫圖”(以弦為邊長(zhǎng)得到的正方形組成).類比“趙爽弦圖”,可類似地構(gòu)造如下圖所示的圖形,它是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成的一個(gè)大等邊三角形,設(shè)若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形的概率是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】龜兔賽跑講述了這樣的故事:領(lǐng)先的兔子看著緩緩爬行的烏龜,驕傲起來,睡了一覺.當(dāng)它醒來時(shí),發(fā)現(xiàn)烏龜快到終點(diǎn)了,于是急忙追趕,但為時(shí)已晚,烏龜還是先到了終點(diǎn).用分別表示烏龜和兔子經(jīng)過時(shí)間t所行的路程,則下列圖象中與故事情節(jié)相吻合的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年8月8日是我國(guó)第十個(gè)全民健身日,其主題是:新時(shí)代全民健身動(dòng)起來。某市為了解全民健身情況,隨機(jī)從某小區(qū)居民中抽取了40人,將他們的年齡分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖。

(1)試求這40人年齡的平均數(shù)、中位數(shù)的估計(jì)值;

(2)(i)若從樣本中年齡在[50,70)的居民中任取2人贈(zèng)送健身卡,求這2人中至少有1人年齡不低于60歲的概率;

(ⅱ)已知該小區(qū)年齡在[10,80]內(nèi)的總?cè)藬?shù)為2000,若18歲以上(含18歲)為成年人,試估計(jì)該小區(qū)年齡不超過80歲的成年人人數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)fx)=log2kx2+4kx+3).①若fx)的定義域?yàn)?/span>R,則k的取值范圍是_____;②若fx)的值域?yàn)?/span>R,則k的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)求;

2)我們知道二項(xiàng)式的展開式,若等式兩邊對(duì)求導(dǎo)得,令.利用此方法解答下列問題:

①求

②求.

查看答案和解析>>

同步練習(xí)冊(cè)答案