【題目】

(1)證明:存在唯一實(shí)數(shù),使得直線和曲線相切;

(2)若不等式有且只有兩個(gè)整數(shù)解,求的范圍.

【答案】(1)詳見(jiàn)解析;(2).

【解析】試題分析:(1)先設(shè)切點(diǎn)坐標(biāo),根據(jù)導(dǎo)數(shù)幾何意義得切線斜率,根據(jù)切點(diǎn)既在切線上也在曲線上,聯(lián)立方程組可得.再利用導(dǎo)數(shù)研究 單調(diào)性,并根據(jù)零點(diǎn)存在定理確定零點(diǎn)唯一性,即得證結(jié)論,(2)先化簡(jiǎn)不等式為,再分析函數(shù)單調(diào)性及其值域,結(jié)合圖形確定討論a的取法,根據(jù)整數(shù)解個(gè)數(shù)確定a滿足條件,解得的范圍.

試題解析:

(1)設(shè)切點(diǎn)為,則 ①,

相切,則 ②,

所以

.令,所以單增.又因?yàn)?/span>,所以,存在唯一實(shí)數(shù),使得,且.所以只存在唯一實(shí)數(shù),使①②成立,即存在唯一實(shí)數(shù)使得相切.

(2)令,即,所以,

,則,由(1)可知,上單減,在單增,且,故當(dāng)時(shí),,當(dāng)時(shí),,

當(dāng)時(shí),因?yàn)橐笳麛?shù)解,所以時(shí),,所以有無(wú)窮多整數(shù)解,舍去;

當(dāng)時(shí),,又,所以兩個(gè)整數(shù)解為0,1,即,

所以,即

當(dāng)時(shí),,因?yàn)?/span>內(nèi)大于或等于1,

所以無(wú)整數(shù)解,舍去,綜上,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的方程是,曲線的參數(shù)方程是為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(1)求直線與曲線的極坐標(biāo)方程;

(2)若射線與曲線交于點(diǎn),與直線交于點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),五邊形中, .如圖(2),將沿折到的位置,得到四棱錐.點(diǎn)為線段的中點(diǎn),且平面

(1)求證:平面平面

(2)若直線所成角的正切值為,設(shè),求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

1)求曲線的普通方程和直線的傾斜角;

2)設(shè)點(diǎn),直線和曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在橢圓 為橢圓的右焦點(diǎn), 分別為橢圓的左,右兩個(gè)頂點(diǎn).若過(guò)點(diǎn)且斜率不為0的直線與橢圓交于兩點(diǎn),且線段的斜率之積為.

1求橢圓的方程

2已知直線相交于點(diǎn),證明: 三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若存在,使成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小店每天以每份5元的價(jià)格從食品廠購(gòu)進(jìn)若干份食品,然后以每份10元的價(jià)格出售.如果當(dāng)天賣(mài)不完,剩下的食品還可以每份1元的價(jià)格退回食品廠處理.

(Ⅰ)若小店一天購(gòu)進(jìn)16份,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:份,)的函數(shù)解析式;

(Ⅱ)小店記錄了100天這種食品的日需求量(單位:份),整理得下表:

日需求量

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.

(i)小店一天購(gòu)進(jìn)16份這種食品,表示當(dāng)天的利潤(rùn)(單位:元),求的分布列及數(shù)學(xué)期望;

(ii)以小店當(dāng)天利潤(rùn)的期望值為決策依據(jù),你認(rèn)為一天應(yīng)購(gòu)進(jìn)食品16份還是17份?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖四棱錐中, 平面,底面是梯形, , , , 的中點(diǎn), 上一點(diǎn),且).

(1)若時(shí),求證: 平面;

(2)若直線與平面所成角的正弦值為,求異面直線與直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱底面,的中點(diǎn),.

(1)求證:平面;

(2)求四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案