【題目】如圖四棱錐中, 平面,底面是梯形, , , , , 的中點, 上一點,且).

(1)若時,求證: 平面;

(2)若直線與平面所成角的正弦值為,求異面直線與直線所成角的余弦值.

【答案】(1)見解析;(2)直線與直線所成角的余弦值為.

【解析】試題分析:(1)第一問,要證明平面,只需要證明,只需要證明四邊形是平行四邊形. (2)第二問,一般利用向量的方法解答.先根據(jù)直線與平面所成角的正弦值為求出,再異面直線所成的角的公式求出直線與直線所成角的余弦值為

試題解析:(1)證明:若時, ,在上取,

連接, ,∵, , ,

,且,

的中點, ,∴,

又∵,∴,

∴四邊形是平行四邊形,∴,

又∵平面, 平面,

平面

(2)如圖所示,

過點,則,則以為坐標(biāo)原點建立空間直角坐標(biāo)系

∴點, , , , , ,

,

設(shè)平面的法向量為,則,則, ,

設(shè)直線與平面所成的角為,則

,

解得,則, ,

設(shè)直線與直線所成角為

,

所以直線與直線所成角的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),曲線,以坐標(biāo)原點為極點,以軸正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的普通方程和曲線的極坐標(biāo)方程;

(2)若射線與曲線分別交于兩點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

(1)證明:存在唯一實數(shù),使得直線和曲線相切;

(2)若不等式有且只有兩個整數(shù)解,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,是平行四邊形,, ,,,分別是的中點.

)證明:平面平面;

)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=x+b與函數(shù)f(x)=ln x的圖象交于兩個不同的點A,B,其橫坐標(biāo)分別為x1,x2,x1<x2.

(1)b的取值范圍;

(2)當(dāng)x2≥2,證明x1·<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右頂點為,上頂點為,離心率 為坐標(biāo)原點,圓與直線相切.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)已知四邊形內(nèi)接于橢圓.記直線的斜率分別為,試問是否為定值?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考已知橢圓 的左頂點為,上頂點為,直線與直線垂直,垂足為點,且點是線段的中點.

I)求橢圓的方程;

II)如圖,若直線 與橢圓交于 兩點,點在橢圓上,且四邊形為平行四邊形,求證:四邊形的面積為定值.

【答案】I;(II

【解析】試題分析:(1)根據(jù)題意可得, 故斜率為由直線與直線垂直,可得,因為點是線段的中點,∴點的坐標(biāo)是,

代入直線得,連立方程即可得, ;(2)∵四邊形為平行四邊形,∴,設(shè) , ,∴ ,得,將點坐標(biāo)代入橢圓方程得

到直線的距離為,利用弦長公式得EF,則平行四邊形的面積為

.

解析:(1)由題意知,橢圓的左頂點,上頂點,直線的斜率,

,

因為點是線段的中點,∴點的坐標(biāo)是,

由點在直線上,∴,且,

解得, ,

∴橢圓的方程為.

(2)設(shè), , ,

代入消去并整理得 ,

, ,

,

∵四邊形為平行四邊形,∴ ,

,將點坐標(biāo)代入橢圓方程得,

到直線的距離為 ,

∴平行四邊形的面積為

.

故平行四邊形的面積為定值.

型】解答
結(jié)束】
21

【題目】已知函數(shù), .

(1)當(dāng)時,討論函數(shù)的單調(diào)性;

(2)當(dāng)時,求證:函數(shù)有兩個不相等的零點, ,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是,以極點為原點,極軸為軸正方向建立平面直角坐標(biāo)系,曲線的直角坐標(biāo)方程是為參數(shù)).

(Ⅰ)將曲線的參數(shù)方程化為普通方程;

(Ⅱ)求曲線與曲線交點的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)試討論的單調(diào)性;

(2)若有兩個極值點, ,且,求證:

查看答案和解析>>

同步練習(xí)冊答案